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‘Wb study the equation of state of godium using the molecular dy-f
namics technique whereby the classical motion of a system of jons is [:xfxi
solved with the aid of computers. The interaction potential between 6x

pairs of sodium ions comsists of coulomb and Born-Mayer repulsion terms

W

and an effective ion-ion interaction derived from pseudopotential

theory. This theory includes the effects of electron gas screening,

[T PSP

exchange, and correlation. We use a model pseudopotential with param-

eters fit to experimental low-temperature data. By using this technique,

we are able to begin with an atomic description of a simple metal and
proceed to calculate its macroscopic thermodynamic properties.

We calculate equation-of-state points consisting of the total in-
ternal energy in volume and temperature space. For our study, the
volume ranges from 102 expansion to 10% compression of the normal den-
b aity and the temperature ranges from 0 to 600 Kelvin, We are able to

calculate directly values of the function that contains the anharmonic

contributions to the energy. We report the results for calculations of
solid sodium in the hexagonal close-packed (hcp) and body-centered
cubic (bcec) phases, and of liquid sodium.

At high temperatures the molecular dynamics system melts. We cool
the 1iquid sodium back to low temperatures and it forms a metastable
glassy state for which we are able to calculate equation-of-state points.

We study the dynamics of the melt transition and define a region where
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partial melting occurs. The upper limit that we place on the melting
/ temperature is consistent with the observed value and the calculated ‘
|  heat of fusion, diffusion coefficient, and atomic distributions agree ( .
well with experiment. f
- ~"” We illustrate the unique capabilities of the molecular dynamics

technique by inducing a dynamic bcc-to-hcp martensitic phase change.

We change the shape of the calculational volume, which pushes the bcc

sodium structure over a potential hill. It then spontaneously trans-

forms to the more stable hcp structure.

-

- The results of this study demonstrate that the molecular dynamics

PR O e s

technique, coupled with an interaction potential that adequately de-

scribes the ion-ion interaction in a simple metal, can be used to calcu- ;

late the macroscopic properties of such systems;A
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We study the equation of state of sodium using the molecular dy-
namics technique whereby the classical motion of a system of ions is
solved with the aid of computers. The interaction potential between
pairs of sodium ions consists of coulomb and Born-Mayer repulsion terms
and an effective ion-ion interaction derived from pseudopotential
theory. This theory includes the effects of electron gas screening,
exchange, and correlation. We use a model pseudopotential with param-
eters fit to experimental low-temperature data. By using this technique,
we are able to begin with an atomic description of a simple metal and
proceed to calculate its macroscopic thermodynamic properties.

We calculate equation-of-state points consisting of the total in-
ternal energy in volume and temperature space. For our study, the
volume ranges from 10X expansion to 10Z compression of the normal den-
sity and the temperature ranges from O to 600 Kelvin. We are able to
calculate directly values of the function that contains the anharmonic
contributions to the energy. We report the results for calculations of
solid sodium in the hexagonal close-packed (hcp) and body-centered
cubic (bec) phases, and of liquid sodium.

At high temperatures the molecular dynamics system melts. We cool
the liquid sodium back to low temperatures and it forms a metastable
glassy state for vhich we are able to calculate equation-of-state points.

We study the dynamics of the melt transition and define a region where
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partial melting occurs. The upper limit that we place on the melting ,
temperature is consistent with the observed value and the calculated
heat of fusion, diffusion coefficient, and atomic distributions agree .

well with experiment.

We illustrate the unique capabilities of the molecular dynamics
technique by inducing a dynamic bcc~to-hcp martensitic phase change. ;
We change the shape of the calculational volume, which pushes the bec
sodium structure over a potential hill. It then spontaneously trans-
forms to the more stable hcp structure.

The results of this study demonstrate that the molecular dynamics
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technique, coupled with an interaction potential that adequately de~
scribes the ion-ion interaction in a simple metal, canbe used to calcu-

late the macroscopic properties of such systems.
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We study the equation of state of sodium using the molecular dy-
namics technique whereby the classical motion of a system of icns is
solved with the aid of computers. The interaction potential between
pairs of sodium ions consists of coulomb and Born-Mayer repulsion terms
and an effective ion-ion interaction derived from pseudopotential
theory. This theory includes the effects of electron gas screening,
exchange, and correlation. We use a model pseudopotential with param-
eters fit to experimental low-temperature data. By using this technique,
we are able to begin with an atomic description of a simple metal and
proceed to calculate its macroscopic thermodynamic properties.

We calculate equation-of-state points consisting of the total in-
ternal energy in volume and temperature space. For our study, the
volume ranges from 10% expansion to 10% compression of the normal den-
sity and the temperature ranges from 0 to 600 Kelvin. We are able to
calculate directly values of the function that contains the anharmonic
contributions to the energy. We report the results for calculations of
solid sodium in the hexagonal close-packed (hcp) and body-centered
cubic (becc) phases, and of liquid sodium.

At high temperatures the molecular dynamics system melts. We cool
the liquid sodium back to low temperatures and it forms a metastable
glassy state for which we are able to caiculate equation-of-state points.

We study the dynamics of the melt transition and define a region where
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partial melting occurs. The upper limit that we place on the melting
temperature is consistent with the observed value and the calculated
heat of fusion, diffusion coefficient, and atomic distributions agree
well with experiment.

We illustrate the unique capabilities of the molecular dynamics
technique by inducing a dynamic bcc-to-hcp martensitic phase change.
We change the shape of the calculational volume, which pushes the bcc
sodium structure over a potential hill. It then spontaneously trans-
forms to the more stable hcp structure.

The results of this study demonstrate that the molecular dynamics
technique, coupled with an interaction potential that adequately de-
scribes the ion-ion interaction in a simple metal, can be used to calcu-

late the macroscopic properties of such systems.
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I. INTRODUCTION

Pseudopotential theory has proved useful in studying many prop-
erties of simple metals (for example, see Refs. 1-7). It is a method
for solving the Schrddinger equation which contains the essential fea-
tures of the behavior of the electrons in these metals.

Molecular dynamics is a technique for studying the classical be-
havior of a many-particle system. Newton's second law is solved from
the force between pairs of interacting particles where the force is de~-
termined by the gradient of the interaction potential between pairs of
particles. The interaction potentials most commonly used in molecular
dynamics calculations are empirically determined (for example, the
Lennard-Jones potential). While such potentials are easy to use and
adequately represent the behavior of some systems, they are not appro-
priate to the interactions between the ions in a simple metal.

We propose to use an effective ion-ion interaction potential de-

rived using the pseudopotential method in our molecular dynamics calcu-

lations. By doing this we are able to start with the atomic description

of the simple metal and proceed to calculate macroscopic thermodynamic
properties. This effective interaction potential is long range and re-
quires the inclusion of approximately 170 neighbors for each particle
when the forces are calculated.

Additionally, the crystal potential energy of the effective inter-
action is only a fraction (about (0.2%) of the total energy of the
crystal. The volume-~dependent energy terms (such as the electron-gas
kinetic energies and the exchange and correlation energies) are prima-

rily reaponsible for holding the crystal together. These terms are
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calculated separately and added to the structure-dependent energy, which
is calculated by the molecular dynamics program.

In the "Background” section of this paper we describe the theory
for both the pseudopotential method and the molecular dynamics technique.
This discussion has been developed elsewhere, as referenced in the text,
and we include the features important to our study for completeness.

In Sec. III and IV we describe the calculation of the effective
ion-ion interaction for sodium and the setup of our molecular dynamics
calculations. We outline in detail the necessary steps for determining
the parameters and run conditions necessary to perform these calculations.

In Sec. V we develop the equations necessary for the calculation of
the volume-dependent energy terms, mentioned above, that must be added
to the structure~dependent terms to arrive at the total system energy.

In these first five sections, we describe the technique for using
the quantum mechanical results of pseudopotential theory in a classical
trajectory calculation of the motion of the ions of sodium. Using this
technique, we calculate equation-of-state points consisting of the sys-
tem energies at given volumes and temperatures for solid sodium in the hecp
and bcc phases and for liquid sodium. We are able to define the equa-
tion of state for a "glassy'" sodium, which is the liquid extended to a
metastable low-temperature state. The results of these calculations
are direct measurements of the anharmonic contributions to the system
energy for these systems.

One of the major advantages of the molecular dynamics technique is
the ability to follow the dynamics of the system studied. We discuss
the melting of sodium and are able to define a transition region of

partial melting. The calculated heats of fusion and upper limit to the
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melting temperature are in agreement with observed values. We are also
able to calculate the atomic distributions and diffusion coefficients
for sodium.

As a final result and as a demonstration of the unique capabil-~
ities of molecular dynamics calculations, we present a calculation of
the dynamics of the bcec +hcp phase change in sodium. We artificially
change the shape of the calculational volume. This pushes the meta-
stable low~temperature bcc structure over a potential hill. The system
is then able to spontaneously relax into the preferred hcp structure
with an accompanying increase in temperature.

Our results indicate that the technique described in this paper
adequately represents the behavior of sodium in the volume (10% expan-

sion to 10% compression) and temperature (0-600 K) ranges studied.
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II. BACKGROUND

This section discusses the necessary theoretical background for
development of the technique described in the introduction, by which
we will study the sc¢: ium equation of state. Section II.A discusses the
pseudopotent fal method and culminates with an expression for the total
effective icu-ion fuceraction. Section II.B describes the molecular
dynamics tecix'are and the applicable equations.

A. The Pseudopotential Method

W. calculate the ion motion in a simple metal. A simple metal is
one for which the conduction electrons behave very nearly as if they

1,2 We assume that the metal consists of

comprise a free-electron gas.
ions and conduction electrons. The ions are composed of the nuclei and
the core electrons. An ion core does not overlap with other ion cores,
The core electron states are assumed to be the same as the respective
states in a free atom.l’3
In this section we describe the pseudopotential method, which is a
technique for solving the Schrodinger equation for the energy of the
conduction electrons. In Sec. II.A.1 we express the electron energy ia
terms of the pseudopotential. In II.A.2 we restructure the equation
to express the electron energy in terms of an effective ion-ion inter-
action. In Secs. II.A.3-II.A.5 we incorporate a local approximation to
the pseudopotential and modify the theory to include electron screening,
exchange, and correlation effects. In Sec. II.A.6 we develop the model
pseudopotential that we will use for this study, and in Sec. IIL.A.7 we

add the coulomb and core repulsion terms to obtain the total ion-ion inter-

action, which will be used in the molecular dynamics calculations.
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1. Conduction Electron Energy. The total Hamiltonian, HTOT’ for
a system of N ions and N' electrons, neglecting external interactions,

is
Hpop = Hp + H, &

with subscript e denoting electrons and subscript I denoting ions,

where

Hy
]

e

electron positions

ey
o
[ ]

ion positions

-3
[}

kinetic energy

m = mass

V. = ion-ion potential interaction

V_ = electron-electron potential interaction

v = jon-electron potential interactiomn

The Schrodinger equation is

E 2)

v - W
Hror “Tor * Eror “ror
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The solution of this equation is intractable, and we sgimplify it
with another well-known assumption--the adiabatic, or Born-Oppenheimer,
approximation. The essence of this approximation is that the electrons
readjust themselv?s so rapidly to a change in ion configuration that
the ions are regarded as fixed when solving for the electron energies.
This uncouples the electron part of the equation from the ion part.

Therefore, the total wave function is separable and is written as
Yror < Y% -
We may solve the electron problem for fixed ion positions to obtain

He‘ye = Eeq’e ) (3

This substituted in Eq. (2) yields

Hporfpor = (Tp *+ Vi + H)¥ ¥, = Epoptyt,

%)
=T Y VYV +EYY
where
> 2
P 2 .2
) he 3
TIWIWe -2 Pm vI‘ye == m Bi 2 ‘qu’e
% ) 2
2 .2 2 ¥ 3w 32y
h P] h e 1 e
IR by R D b=t =) -
) ) % . Ry Ry

The last two terms in this expression are neglected in the adiabatic
approximation because they contribute negligibly to the system en-

ergy."'s Thus, we can write

Hpor¥ror = Ye(T1 * V1 + E¥1 = Epor¥i¥e

or
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(B, + EDY¥ = Eo¥p (5)

and we gsee that the adiabatic approximation allows consideration of the
electron problem separately from the ion problem. The conduction elec-
tron energy becomes an effective potential energy of the ions.3 We now
solve the electron problem,

Hewe = Eewe ‘

We assume the self-consistent field, or one-electron, approximation,
where the potential (V(?)) that an electron moves in is calculated in a

self-consistent manner.l We write
>
He = Te + v(r) ,

where V(r) is the self-consistent field and we write the Schrddinger

equation for a single electron as:l
>
Hew = [Te + V(r)]w = Eeq)

Following the notation in Ref. 6, we use the index t to demote core
electron states and j to denote the state centered at ion position Rj'

We have

[Te + V@Y, = E b 5 (6)

where the are the same as for the free atom, according to our first

t,]
assumption.
With the above equation established within the constraints of the

assumptions mentioned, we now restructure it in terms of the pseudo-

potential formulation. First we expand the electron wave functions
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in terms of a basis of functions that are constructed to be orthogonal

to the core states. Following Harrison,l’6 we use the notation

F o d
f'lf> 5 Q-;i eik T , @ normalized plane wave,
[e,3> = 'ilt(; - Ej) , a normalized core function
centered at ion position Rj’
and .
<t, k> = Q‘*f &y, & - i{j)e“‘"

Then we write the basis functions, called orthogonalized plane waves, as
->
OPWk = (1 - P)(k> ,

where P is the projection operator, which projects any function onto the

core statesl (note that <t,jjt’',j'> = stt'sjj')'
P -Z le,i><e,3] . (7N
i

We expand the conduction electron wave function in terms of the orthog-

onalized plane waves to obtain

w-(l-P)Zakho, (8)
K

where a, are the expansion coefficients. If we substitute y in the
Schrodinger equation, the solution could be attempted using the standard
orthogonalized plane wave method. We are attempting a different approach

and will restructure the equation. We introduce the pseudowavefunction,

6 =3 s lk> )

so that

p= (1 -P¢ . (10)

J
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We note that ¢ is an expansion of free electron states and that ¢ = 1
outside the cores because the projection operator is zero there.6 Sub-

stituting in the Schrddinger equation yields
T (1 - P)¢ + V(E)(1 - P)¢ = E(1 - P)¢p ,
and rearranging gives
T + V(¢ - [T, + V(r)IP$ + EP6 = B¢ ,
so that
Te¢ + W = E¢ , 11
where we have defined the operator,

W o= V(?) - [Te + V(?)]P + EP = the pseudopotential operator.

Using
[T, +V@DIP =) B, ylEa0<td]
t,3
we have
Ve V@ +Y (- B, [Ead><e,d] (12)

t,3
which is the pseudopotential equation.6
As Hartisonl’6 notes, the pseudopotential has several interesting
properties. It is nonlocal in that it depends on all ion positions and
states. It 1s an operator and is not restricted to multiplying the
wave function. Its form 1is not unique and the pseudowavefunctions are
not unique. That 1is, an arbitrary number of core states can be added

to the pseudowavefunctions and they will still solve the Schrldinger
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equation. Also, Harrison shows that (E -~ E

t,]
function of the energies and the core states [f(E,t,j)] and the solution

) may be replaced by any

will remain unchanged. There exist many valid forms that will yield

correct energies and wave functions.6

The pseudopotential property of importance here is that it can be

considered small. V(r) is negative, P is positive, and (E - E_ ,) is

t,]
positive so that the terms in Eq.(12)tend to cancel.6 Experimental
evidence corroborates that, in simple metals, the conduction electrons
behave much like free electrons.

Given that W is small, we may use perturbation theory to solve for

the electron energies. We note here that, even though the W form is

arbitrary, if the problem were solved exactly (i.e. .t all origes in W),
the correct solution would always be obtained. Howsver, using perturba-
tion theory, the W form will affect the result and the validity of the
form used must be determined by the results obtained when applied to a
specific ptoblem.6

Using perturbation theory, we calculate the electron energy in the

state k to the second ordet,6

- -+ > - >
Ek =g + <-1:|W|l:> +Z ' <kLW[1€t. +.qZ<k * glulko> , (13)
q k k+q
where
2,2
h
" (14)

are the free-electron kinetic energies. The prime on the summation in-

dicates that the q=0 term is omitted from the sum. We also may calcu-

late the first-order pseudowavefunctions as

Ve e et | g b cew s

L IO, U T O T N O

ae -~
—-— - RO W

PEPRRREIS I B . 2 - 7 1 T2 gt

-
S

T

SO X

o

i




o
Fi

11

& = |fc’> +Zaqk|k+q> . (15)
q

where

<E + §1w|§>
3k = & - €k+q , Q%0 . (16)
The q = 0 term, which does not immediately concern us, is determined in
Ref. 2 by normalization.
Given an appropriate pseudopotential, we evaluate this expression
and sum over all occupied electron states to determine the electron
energy.

T g,

k
{l k is occupied
n, =

0 k is not occupied
This particular result helps solve the ion motion problem (see
Eq. 5). In evaluating the conduction electron energy we must consider
the electron self-energy terms that are counted twice in Eq. (17). This
will be discussed appropriately in the ensuing sections.

2. Effective Ion-Ion Interaction. We evaluate now the matrix ele-

ments in the perturbation expansion for the electron energies [Eq. (13)].
In Eq. (12) and its discussion, the general expression for the pseudo-
potential was shown to be
->
W V@ 4 EE D <] (18)
t,]

V(;) contains the potential field due to the ionms, VI(;), which may be

written as the sum of contributions from individual ionslac positions

->
r,.

3
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VI(?) -‘j‘: vI(i’— ?J) . (19)

The 1lon screening, according to Harrisonl may be superimposed at the
ion sites and will be spherically symmetric. We have already written

the core states as
[t, 3> = wt(? - i’j)

If we require that the function f(E,t,j) depends only on the core states
through the index t, we may separate the pseudopotential and write it

as a sum of contributions from individual ion sites asl

-> ->
W -Zj: wi - ) . (20)
This assumption is essential to the pseudopotential matrix element cal-
culation.
Now we are able to factor the .atrix elements. Choosing W of Eq.

(20) as our pseudopotential allows factoring out the structure-dependent

term. We write

- >
<k + E[w|k> - %fe—i(ﬁ-f-q) rz w(t - 'r’j)em t a3
b
. -1q-rj
Changing the summation and integration order and factoring out e .

> - > -> > - >
I+ 3|W|k> - é e-iq-rjfe-i(ﬁ-t-q)-(r-rj)w(? _ ?j)eik'(t'rj) d3r

The integral 1s just the integration of an individual potential with
respect to the position of that particular ion. The sum contains the

information about the system structure, so we write

|
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- =1 iq-r
S(q) = structure factor = N E e i,
and we define

> -
<k + 3|w|k> = form factor = %fei(fﬂ)'r W(?)eit'?

where

Qy = atomic volume = /N
So the pseudopotential matrix elementl becomes

- -> > > > -
<k + q|W|k> = S(q)<k + q|w|k> .

13

(21)

(22)

(23)

This factoring 1s critical to the development of the pseudopotential

method. It allows simple solution of the seemingly intractable many-

body problem.1 The detailed ion positions enter only through the struc-

ture factor S(;), and the ionic potential details enter only through the

form factor.

We are ready to sum electron energies over the available states to

determine the total electron energy. We rewrite Eq. (13) in terms of the

structure and form factors as

E = € + SO<K[w]’> +3 s*@Ds@)<klw|k + <k + Jw|o

€y, T €
3 k ~ Sk+q

Note here that

N
$(0) -;‘1-21 .1
=1

(24)

For free electrons in the ground state, the available energy states

are described by the Fermi sphere of radius,
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3"2, 1/3
kf - (—Q—“) s (25)
0
where kf is the Fermi wavenumber. With the pseudopotential present, the
energy surface is not spherical. However, when evaluating the energies

to second order, we may neglect this higher order effectl’2 and sum

over the Fermi sphere. We divide by N to obtain the total electromn

energy per ionm, N-lEe.

2
Nlg - -1—): E, = %3 £ edyade (26)
k<kf (2m)

where we have used the density of states in wave-number space to convert

the sum to an integral, including a factor of 2 to account for spin

states. !
We now evaluate the contributions to Eq. (26) of the three terms in
Eq. (24). The first is

Q ke 2.2
/‘ 3, f h°k° 3
€ (2“) 2m

<2n>3

(V]

h

3
Z E Ef ’ (27)

3 2
=3 ke =23

which is the average kinetic energy of the electrons times the valence.

The second term is

3
2, ke 2 i Jo <kl
K| [k = — .
(2m (2m ]; £ 43,
2
- Q%%’—'ké KwK>=2 Kwlk> ,  (28)
2m
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which 1s Z times the average valueof <k/w/k>. Both of these terms de-
pend on volume but not on the details of the ion positions, and they

represent the free-electron energy.l Exchanging the order of the sua

and integral, the third term is

' p.9} k > > > >

ZS*(q)S(&) 03f £ 43 <§Lw|'§ + <k + qlw]E ) .
+ +

q (2m) 0 'E(kz- |k+q|2)

Here, we define the part of this expression that is a function of I;I

only as the energy wave-number characteristic F(q). It is determined

e AR

by w, which is spherically symmetric, and kf.

24, /‘kf a3 <klwlk + 3><k + qlwlk> (29)
3

(2m

F(q) =
0 La?-lk+ah

The third term is called the band-structure energy, Ebs’ and is written

B, "), S"@S@F@ . - (30)
q

Note that F(q) depends on the volume but not on the detailed ion arrange-
ment, which is determined by the structure factor. This band structure
energy interests us when we calculate the effects of an fon position

change in a constant volume situation. It may be considered an effective

BRAEEWE, & & #0242 Whes e v i

(indirect) interaction between ions.l

To show this in a more direct manner we restructure the expression

for Ebs’
N >
- s Ds@F@ =Y L -1 (F1-2)
Byg =2, S*(@OS@F(@) =) 2 F““if:e ]

3
q q i=] jul b
x,
-3
3
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Note that
N > > >
Y oldr (Frory) -i 1=N ,
i-j 1-j-1

so that

B "L S FO(N+ Y 13 Gr-fy)
N

q 1,3

where the prime on the summation indicates exclusion of the i = j term.

Therefore,
1 ' > > 1 '
UL DI ANCEEARS DI (L
1,] q
The second term here is volume dependent and we define
- 2 ! ia'?
Vop® = % ; F(q) e . (32)

We have written the structure-dependent terms as a summation over the
ions of an effective potential that is dependent only on the positions

of the ions through (?j - ?i). VIND is the effective interaction between
the ions for which we have been looking and which we now must evaluate.

Replacing the summation of Eq. (32) by an integral,

- _9-5. d3q ,
q (2m)

we evaluate the angular parts of the integral over q space to obtain

S 9553 Aot o 10k AN AR D AR ARG A 4oy 5~ bt A KB S A+




S ey

o

. YLD . o

s

gy
.

“

17
v ('r’)-n—o “p(q) HRar 2y (33)
l IND 2 1 qr 1 4 -
™ Y0
l This is a two~body, central force interaction between ions that may be
added to the direct ion-interaction terms when calculating the ion mo-
l tion.
3. The Local Approximation. Anticipating that we will approxi-
l mate the pseudopotential by a real model potential with adjustable
l parameters, w(r), we make the "local approximation,"” which will simplify
the rest of the deve].opmem:.2 We assume that w is independent of q and
l we neglect its nonlocal, operator character. Therefore. we can write
> >
l <& + q[v@® k> = -;;f w@e M Praw (36)
' Additionally, the true wavefunction now equals the pseudowavefunction
l to first order within a normalization constant and can be written
' -> ->
= x> +q> .
b, = Ik *Z aqklk q (35)
1 ;
We now evaluate the energy wave-number characteristic in the local
l approximation. w(q) is taken out of the integral of Eq. (29) so that
I AR N g
l L L S TR -
The integral is evaluated2 over the Fermi sphere as
a3k g’
i f - €@ -1 , (36)
2 > +2 2
k° - [k +q| me
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where
2 2
_ 1 o _De (1-n [L+n
e(q) -1 72\ n mll-n|+l)
Zwkfh n
and
R
1
which yields
—a a2
F(@) = ——u, [*le(@ - 11 . (38)
8tme 1

€(q) is the static Hartree dielectric function for free electroms. It
has a logarithmic singularity at q = Zkf, which will affect gignifi-
cantly the calculated interaction potential form.

Constructing the local pseudopotential by following the notations

of Ref. 2, we write

WU W W, (39)

where WB is the "bare-ion" pseudopotential, the local potential by which
the electrons interact with ions. ws is the Hartree screening contribu-
tion, which includes «nly the coulomb interactions with the other con-~
duction electrons determined self-consistently.l Wx containg contribu-
tions due to exchange and correlation. WB will be chosen later as an
appropriate model potential. ws is determined accurately in the next

section. W* must be approximated and is discussed in Sec. II.A.S5.

4. Self-Consistent Screening. Within the adiabatic approximation,

we treat the conduction electrons as though responding in an

Eounituce, - 2hdtl
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electrostatic sense to the total potential W. The self-consistent
electron contribution, Ws, due to the resulting charge density, d(;) may

be calculated using Poisson's equation. (We are following Wallace's

methodz.)
Por) = -4me 4@ (40)
where
->
W (r) = ed(r)
and
d(¥) = electron density
so that

VZWS(?) = -4we2d(r) .
We now expand WS(F) and d(?) in Fourier series

b i > >
VQW (¥) = 32 iw QT . ) qzw e1'T & -4’ d(r)
s sq sq
q q
= ~47e? yd elacr
q q

The subscript q denotes the qth Fourier coefficient. Thus the expan-

sion coefficients for ws and d are related through

2
4mre
wsq < qz > dq . (41)

To calculate the screening contribution we must calculate the charge

density, remembering that we are calculating the electron energies to
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second order and the wavefunction to first order in perturbation theory.

The charge density is given by
- *
d@ = Inbb, (42)
k

where the sum is over all electron states and n 1s the occupation number,
which is one when the state is occupied and zero when unoccupied.2 Using
Eq. (35), which 1s the expression for wk accurate to first order, we

calcula:ez, keeping only first-order terms,

> >
LS | vk iq-r (43)
by, = 0 [1+§ (@l + ag)e
We identify the Fourier coefficient dq, defined by
- i—»-»
d(r) = Z dq T
q
as
-1 -1 -1
dg = " [ oy = 0Nz = G2
k
d =20t Joa ., qFo0 . (44)
q L Fdk
Substituting the value for aqk, yields
w oW 3
1 4k : 5)

-1 q
d = ZQ =
1 Zk:nkek-ek-!-q n23J - k4 g2

where we have used the density in wave-number space with a factor of 2
for spin to convert the sum to an integral and the zero order electron

energy,

2
h 2
Ek - ™ k . (46)
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We can calculate the Fermi energy Ef and Fermi wave number kf to
second order due to the local pseudopotential perturbation.2 This
exercise results in zero-order terms for Ef and kf, followed by second~
order corrections. First-order corrections do not appear. This result
allows us to take the integralf d3k over the zero-order Fermi sphere
and ensures that the results will still be good to first order. We

evaluate the integral

J[ 3k
- +3l?

over the Fermi sphere as we did in Sec. 1.A.3 and calculate2

2
qQ W
d, =—3 1 - e@] , 1)
q 4Te

where €(q) is the static Hartree dielectric function given by Eq. (37).
Substituting into Eq. (41), we find the result for the Fourier co-

efficients of W is
W = W 1 - € . 48

Momentarily, we are neglecting Wx of Eq. (39), so

and we see that

B L T

W =W /e (49)
| q Bq (q)
E so that £(q) plays the role of the dielectric function.1
f_ Now that we are including the coulomb energy of the conduction
i
} electrons, we must reevaluate the expression for the structure-dependent
g
‘,
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part of the total band structure energy, Eq. (30). In this equation we
have double-~counted the electron self-energy Eee and must subtract it

to get the correct result. That 1is,

1)
- * Yq) - =
B, =D, SSQS@F (@ - §E, - (50) ;
4 1
|
The prime on F'(q) indicates evaluation of a more appropriate energy
wave-number characteristic, which can be used in Eq. (33) for VIND'
The electrostatic electron self-energy per iocn is given by
1 1 3 > >,
N Eee ™ N d7r d(r) ws(r) s (51)
which (neglecting the q = 0 term) can be writtenz in terms of Fourier

coefficients as

1 - 25
5 Eee = 2N g dq ws_q . (52)
2
W= (ﬂe—> d (53)
sq 2 q
q
so that -
Q
1 0 r2
SZE_ = oqw_ow . (564)
N Tee 81Te2 Pt 8q s-q

From Eq. (20), we have

idgded #35

- - - B
wE) = ) w(lr - rjl) , z
3 ~
and we can show that
W =8 . 55
q (q)wq (55
i H 2 SRS SRR o sw o e e e ol
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where
1 iq-r ,3
- nr
Wq-—wa(r)e Tr g (56) P
1 gt 3 !
w o= —-—/w(r)e Cr 47 (57) ‘
T i ‘
and, as in Eq. (21),
. 1 -i3-¥
S(q) Sq ™ § fj: e 3
which yields
1 f0 ' 2 2
LB > 58.q @ luggl™ (58)

87Te q

We may substitute this into Eq. (50), using the relarions between Wq, qu,

and W to arrive at
Bq

2
Ebs 32 5,8 Qoq I"’Bqlz s -1

q q -q 81re2 e(q)

The appropriate energy wave~number characteristic for use in Eq. (33)

to calculate VIND is, therefore,
2 € -1
F(q) = —2—|w |28 =1 (59)
87re2 Bq £(q)

This expression accounts for the self-consistent screening of the elec-

PRI IR Y ¥ 2 PR M

tron gas, within the order of our perturbation calculation.
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5. Exchange and Correlation. We include approximately the exchange

{
|
and correlation effects in the screening calculation. We follow the f;
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discussion in Ref. 2. The screening calculation outlined in the preced-
ing section yields the appropriate result with the inclusion of an addi-

tional interaction due to exchange and correlationm, wx, so that

W =W +W +W
q Bq sq xq

We assume that there exists an average interaction I(q) within the elec-

2
tron gas,

1Y = .
q I(q) d (60)
Then, using Eq. (41),
2 2
4Tie 4Te
sq + wxq = [ 7 + I(q)] dq == 1 -] dq ’ (61)
q q
where
_.2
£ = s 1) (62)
4Tre

and we parallel the screening calculation algebra to obtain

W,

- Bq
Ve * T Te@ - T = @7 (63)

We recalculate the electron self-energy appropriately [see Eq. (51)] from

Q [
x':ee " 2 dq(wﬁs-q * wx-q) (64)
q

and reevaluate the energy wave-number characteristic. This all follows
the development in the preceding section, with the additional (1 - £(q)]

term to keep track of. The result is
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o a2
hd 2 £(q) -1

0
F(q) grel I"Bq| 1+ [e(q) - 1][1 - £(q)] °

(65)

He:l.ne7 discusses the formalism that we have just outlined and states
that the form of the equation may be justified, using exact many-body
theory.

To determine an appropriate form for f(q), we consider the calcula-
tion of the effective interaction between quasi-particles in an inter-
acting electron gas. As discussed in Ref. 8, in the random-phase ap-
proximation and the high-density limit, a partial matrix element summa-
tion of "ring" Feynman diagrams is appropriate. The effective inter-

action potential is calculated to be

2
4Te (66)

v - —_— ,
eff q qZ + k2
s
which in real space is a screened coulomb interaction in the Thomas-
Fermi approximat;:l.on,8

-k r
> e s . (67)
Veff(r)ar e

Sham9 follows Hubbard'slo treatment and replaces Veff q by

2
- bTe (68)

v 2 2 2
eff q q +k£+ks

where kf is some average of the Fermi vector. Hubbard also proposes
that the effect of exchange on the screening in the high—q limit should
be to cancel half the direct coulomb contribution to the screening. We

will writez’7’10’ll
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1 ( Awez
v =I(q) = -3 -———-> , (69)
ff 2 2 2
€ 1 q + Ekf

where we have replaced k% + k: by gk%. This is in accord with Wallace.2

£ is an adjustable parameter that we will determine later to ensure that
I(q) has the correct q + 0 limit.2

The final form for f(q) to be used in Eq. (65) is, therefore,
1 2
£Q) = 55— . (70)
2 2 2
q + Ekf
We have specified the terms in the energy wave-number characteris-
tic {Eq. (65)], including exchange and correlation effects within our
level of approximation. Heine7 discusses the exchange and correlation
effects and states that the uncertainties arising from the approxima-
tions used in determining Eq. (70) are greater than the uncertainties in
the pseudopotential. We continue by choosing an appropriate local
bare-ion potential W

Bq IND®
6. A Model Pseudopotential. We approximate the local bare-ion

to complete our determination of F(q) and V

pseudopotential, wB(r), by a simple model which behaves like the poten-

tials in the real metal. wB(r) is composed of two contributions,z

wB(t) = wz(r) + wc(r) . (71)

wz(r) is due to the coulomb attraction of the ion and has the form

~ze
r

wz(r) -

with Fourier transform (i.e., the wzq matrix element)
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~4ze
. ——_— 72
et (712)
"0

wc(r) is a localized potential confined to the core region. It
approximates the repulsion due to the core electrons and tends to cancel

the coulomb part within the core. An appropriate choice for v, (r) is of

the form of the s-state core functions,l’z

v (F) = e 0

The Fourier transform of this is

w -m-———l-___
cq % (62+q2)2

We introduce the arbitrary constants g and o such that

B 1
- B e | T (73)
cq T q, [(1 . quz).]

The form that we will use for the matrix element of the bare ion po-

tential in Eq. (65) is, therefore,

(74)

v =1 [—ls-rrze2 + B ]
Z -
Bq QO q2 a+ quz)

7. Total Ion~Ion Interaction. For a molecular dynamics calcula-

tion we are interested in the total ion-ion interaction potential. We
have just calculated the effective interaction VIN'D due to the presence
of the nearly free electron gas in a simple metal. To this we must add

the coulomb replusion between the ions,5
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! %
zze2 }
' T (75) F
l )
l and the exchange repulsion between two ion cores, i'
" |
; “'B
: | l age (76) ‘
e 2
! which is a Born-Mayer repulsive central potemtial. oy and g are
' empirically determined constants.
l Therefore, we may summarize the results of this development by 2}
3 s
l writing down the ion-ion interaction potential, which will be used in our .
molecular dynamics calculations:
' -YgF
i Vi (®) an
where !
i
I OB ——'/‘wl-'(q)f-“—s'£ q" dq , (78) ]
l 2 1
-0nq -
-_0 2 g(q) =1 7
F@ = — ol T3 Tet@ - 1T - E@T 79) 3
| H
5
mez {1~ n? 1+1 9 *
1 e@ -1e (il 20 v1) L neg L GO :
| i
! £(q) = —5—5— , (81) 3
. 2(q” + Ekf)
|
; l and
1 -lmzez B »
VBq " O 7 -t 73 2] . (82) i
l 1 Yol q 1 +q%% |
|
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The determination of the constants aps Yp» £, B, and p will be discussed
in Sec. III.

B. Molecular Dynamics

We have calculated an effective interaction potential for the ions
in a simple metal [Eq. (77)]. We use this as the potential of inter-
action between pairs of classical particles and will solve for the ion
motion in the metal using the molecular dynamics technique. 1In this
section we present the equations that are solved by high-speed com-
puters to yield ion positions and velocities. We derive the conserva-
tion of energy and momentum in a molecular dynamics system, describe sys-
tem size and boundary effects, and discuss the methods of calculating
thermodynamic properties from the molecular dynamics results.

l. Central Difference Equations. For a three-dimensional array

of N identical particles, we solve the set of classical Newtonian equa-

tions,
u{%i(c) S ACHS (83)

where

i

particle number = 1,2,---,N ,

=
r, = particle position (xi,yi,zi) s

m particle mass, and

?i = force on the ith particle.
The dots denote time differentiation. The force on the ith particle is
determined generally by the positions of the other particles, and thus

the equations are coupled. We develop the difference equations used in
the molecular dynamics program to solve this system of equations. Con-

sider, for simplicity, only the x-direction. The y- and z-direction

equations are identical.
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In the x~direction
mxi(t) = in(t) . (84)

Performing a Taylor series expansion on At, the new position at t + At

is

x;(t + 86) = x(€) + At % (t) +%(At)2§i(t) P (85)

and similarly,

¢ a2
xi(t - At) xi(t) - At x,{t) + 2(At) xi(t) + . (86)
Adding these equations yields
2.,
xi(t + At) = -xi(t - At) + in(t) + (At) xi(t) + oo, (87)

Subtracting gives

. xi(t + At) = xi(t - At)
xi(t) = T3

. (88)

These equations constitute a straightforward central difference
scheme that 1s appropriate to the solution of the ith particle position
and velocity and is accurate to the order of (At)3.

We work easily in terms of displacements defined at the time inter-

val midpoints as
t = -
ax, (t + 4—2) x,(c + at) xi(t) . (89)

With this definition, and expanding xi(t + At/2) in a Taylor series

about At/2, the following difference equations are calculated as
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ax (e + 55 = ax (e - 55 + (an)? F";(t) , (90)
x, (6 +88) = x () +&x (e +55) , and (91)
et %) ) Axi[t :t(Ac/Z)] , 92

where we have used xi(t) = in(t)/m.

These are the equations used in the molecular dynamics program to
solve the coupled system of differential equations. The force of the
ith particle is calculated by assuming additive interactions between

pairs between the ith particle and its neighbors.

F 4(0 -ﬁ inj(t) . | (93)
j=1

The prime on the summation indicates that the j=i term is omitted.
inj is the x~component of the force on the ith particle due to the jth

particle and

inj = -iji (94)

by Newton's third law. For this study we calculate the force by taking
the negative gradient of the ion-ion interaction potential determined
through pseudopotential theory [Eq. (77)].

The computer program that solves the difference equations is easily
understood.* After determining the initial positions and velocities of

the particles (see Sec. IV), all the particle forces are calculated

*Thc molecular dynamics computer program used in this study was developed

by B. L. Holian and G. K. Straub of the Los Alamos National Laboratory.
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based on the current positions. With in(t) thus calculated,

Axi(t + At/2), xi(t + At), aad ii(t + At/2) are evaluated readily by
Eqs. 90-92. With xi(t + At) known, the time step is advanced and

in(t + At) is calculated. In this manner, the trajectories of all N-
particles are calculated exactly at any time [within (At)3]. The par-
ticle positions and velocities may be evaluated to obtain a time history
of the system being studied.

2. Conservation of Momentum and Energy. The difference equations

just described can be shown to explicitly conserve momentum and energy.*
In a system of N identical particles interacting by way of a conserva-
tive, additive force between pairs, where

-3 (x,)

3xi ’

in(c) = uﬁii(t) =- (95)

and ¢ 1s the additive potential between pairs, we can demonstrate con-

servation of momentum, P, by showing that

P(t +A7t) = P(t -éﬁ
or
i Y At
mei(t ) -mei(t -4y . (97)

i=1 i=]

Using the difference equations [Eqs. (90)-(92)] we evaluate

N F
E %, (r + 35 - i trye + 85 « 23 [ax, - 48 + Eey?]

i=1 i=]1

T omee iz i SV VINC IR 3 I Y

*
Based on a calculation by Brad Lee Holian of the Los Alamos National
Laboratory.
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Also,
N N N N N,
PILNEDIDILITED I DTSN
i=1 i=1l j=1 i=1 j>1
But, by Newton's third law
Fety ™ Txyt

so that this sum is zero and we have shown in Eq. (87) that

< At B At

PIEACE S T DILACES I

i=1 i=]
which proves that momentum is conserved to within the accuracy of the
difference equations.

Similarly, we calculate the total energy to demonstrate conserva-
tion of energy.
E = total energy = potential (PE) + kinetic (KE) energy.
We calculate the change in potential energy,
aPE = PECt + 85 - pECe - 5

and compare it with the change in kinetic energy,

AKE = KE(t +92£) - RE(t --Az—c) .
The change in potential energy is

— — e —— e - -
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- A_
APE -Z [9,(t + ) - o,(t - £D)]
‘ i{=1
by is the potential energy of the ith particle defined as

N
HORDIING!
i=1
and
Expanding in Taylor series yields

N
APE -izl{[¢i(t) + == ) q';i(t) ( ) q)i(t) + O(At) ]
. 2.
- fog® - &40 +3 @0 + oo}

-Z [$,(E)ae + ocat) )
1=1

The potential is related to the force by

3 « d0(t) o do(t) dx(¢ - .
by(orae = Sl pe = SHEL KD ¢ o p (o)i(e) A (100)
so that
N
APE =Y [~F (0)%, (6) at + 0ae)°] . (101)

=1

The change in kinetic energy is

2
xx-—z [%, (:+A—) -ii(t—%t-) ]
i=]
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We evaluate these terms by noting that
e + 25 ok e - 857 - e + 85 + 2,0 - )
[%,(c + 55 - % (e - 45 (102)

and by expanding using the Taylor series

ke 48wk 0 + 85 () + 257 (0 + oan?
. . 2...
£ =80 =2 @ - F 0 +2dH F 0 + o’

By adding and subtracting the second of these equations from the first,

we get the needed factors in Eq. (102). By using
Fi(t) = mx,

and some algebra, we arrive at

N
AKE =; [F, ()%, (t) + 0(an)’] (103)
=1

and we see, from Eqs. 101 and 103, that
AE = AKE + APE = O + 0(At)> . (104)

Thus we have shown explicitly that both momentum and energy are con-
served by the difference equations.

3. Boundary Conditions and System Size. We now set up the system

of N interacting particles. We perform our molecular dynamics calcula~
tion on this system, and from the resulting information, we infer the

macroscopic properties of sodium. The system is obviously limited to
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having N much less than a macroscopic (1024) number. We must minimize
the effects of finite system size by choosing appropriate boundary con-
ditions, and we must recognize the N-dependence of our results.

To minimize the effects of finite system size, we choose periodic
boundary conditions whereby the N-particle system is repeated periodic-
ally throughout space and thus may be considered an infinite system with
the imposed periodicity. Figure 1 is a schematic of an N=3 system in

12 L is the length of

two dimensions and 1its nearest repeated systems.
the square system box and RMAX 1s the range of the potential. We

use the minimum image convention, which means that a particle only

interacts with the image of a neighbor that is nearest to it. That is, in

Fig. 1, particle two will only interact with the image of particle three

in the box to its right and no other '"particle threes." This constrains
us to keep the system length, L, in a given direction greater than twice
the potential range so that not only will a particle never interact with
its own image but it will not interact with more than one of its neigh-
bor's images. The method for determining our particular system dimen-
sions and the potential range is discussed in Sec. IV.

The N dependence of calculated system properties has only been
determined for some simple cases. (See discussions in Refs. 12, 13,
and 14.) Based on such studies, we expect a 1/N dependence. However,
a generalized solution method does not exist.12 Therefore, we must in-
clude sufficient particles in the system, and we check to see that the
calculated results are not N dependent. If there i{s an N dependence
we may be able to evaluate how to extrapolate our results to the macro-

scopic N limit. In our equilibrium property studies, we are not overly

concerned because the N dependence is generally small for systems with
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Fig. 1.
A two-dimensional system of N=3 particles in
an L x L box with periodic boundary conditions.
RMAX is the range of the potential. Note that
as particle( moves out of the system it re-
appears by way of its periodic image.
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n > 100 and we will be dealing with N > 600, owing to the long range of
the pseudopotential. If we study nonequilibrium properties or effects
relating to large numbers of particles, such as coexistence of phases,
then the N dependence becomes more critical. We discuss N dependence
effects as they affect our calculations in Sec. IV.

4. Thermodynamic Properties

When it is appropriate to calculate macroscopic equilibrium prop-
erties from an N-particle molecular dynamics system, we proceed by tak-

ing averages over t:ime.12

In a2 molecular dynamics calculation, the
number N of particles, volume ( of the system, and total energy E remain
constant. With these coastraints, the system forms a microcinonical en-
semble. However, there is the additional constraint of constant linear
momentum (M), so we would describe the system as having N, V, E, and M
constant.15 This must be taken into account when comparing molecular
dynamics time averages with ensemble averages obtained using statistical
mechanics or other calculational techniques such as Monte Carlo (see
Refs. 12, 13, and 15 for discussion). We are not concerned immediately
with such comparigsons. The essential assumption regarding the appropri-
ateness of the averages is that the system is ergodic. That is, all
states of the system in phase space are mutually accessible13 with equal
probability, so that all time histories of the same system have equiva-
lent statistical averages.16 This assumption has never been proved,

but experience shows it to be valid.12 We agsume that our time averages
yield the appropriate statistical averages of the system's equilibrium
properties.

We will now determine various properties of our system at a partic-

ular time, with the understanding that we will sample these properties

many times during a molecular dynamics calculation and average them.
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We calculate the average kinetic energy per particle of the system

of N particles as

N
. L 1 .2 .2 2
KE N g ) 2 m(xi + ¥y + zi) . (105)

The average potential energy per particle is

N N 1 -> ->
¢.pg.21_N IGEREE AP (106)
i=] §=l

where

->
r, = (xi,yi.zi)

and ¢(r) is the potential that describes the interaction between two
particles. The factor of 1/2 is included to correct for double-summing
of the potential energies.

Our system at equilibrium, obeying the laws of classical dynamics,
will satisfy the Maxwell-Boltzmann law. The law states that the average

of a property (P, for example) can be obtained by

F . deN ) f;...fe'E/kT P dql...dp3N
N

SRR L S

where E is the system emergy, kT is Boltzmann's constant times the tem-
perature, and the integration is over all points in phase space with
positional coordinates a and momentum coordinates pi.17

Using this law, we may calculate the distribution function for

each velocity component as
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- S S (x)
R L 1%
1
kT
o= (??) : (107)

and similarly for y and z. This is the Maxwell or normal distribu-

t::l.on.l7 Then we calculate the average kinetic energy per particle as

KE = —;—(i" + 3% 4+ 3% - % KT . (108)

We are assuming that our system has no net motion, i.e. X = y = 3 = 0,

If there were net motion, we would calculate only the fluctuations
about this average motion and replace :':2 by (x - §)2. This connects
the kinetic energy per particle calculated using molecular dynamics and

the thermodynamic temperature of the system.

N
1 1 .2 .2 .2 3
KE-N;l 2m(xi+yi+zi) > kT . (109)

We also accept this expression as the definition of kinetic temperature
to be used even when the system is not in equilibr::[um.l8
Note that the N-particle molecular dynamic system may not be in
equilibrium, Also, the velocity distribution may nct be normal. We may
investigate this, as far as the temperature and kinetic energy are con-

cerned, by seeing if the kinetic temperature is isotropic. That is,

we may for convenience define

(110)
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and, similarly, Ty and Tz. We require that Tx - Ty = Tz for the system
to be in equilibrium. To investigate if the velocity distribution is
normal, we may calculate the kurtosis (which measures the ''degree of
peaking'") of the distribution in the molecular dynamics calculation.19
We calculate the kinetic temperatures and the kurtosis for example
calculations and discuss their implications in Sec. IV.

The volume of a molecular dynamics calculation as we apply it is
a constant and an input parameter. A given calculation will yield the
potential and kinetic energies and the calculated temperature. For
each calculation we have an equation-of-state point for the molecular

dynamics system consisting of a total internal energy (kinetic plus

potential) at a volume and temperature.
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III. THE ION-ION INTERACTION POTENTIAL FOR SODIUM

In this section we discuss how the necessary parameters are deter-
mined for the calculation of the ion-ion interaction potential in Eq.
(77). We use these parameters to calculate the functions in Egs. (78) to
(82) which specify the potential. Finally, we calculate the interaction
potential and discuss how it 1s tabulated for use by the molecular dy-
namics program.

A. Determination of the Parameters

1. Determination of £. The constant £ in the expression for the

function £f(q) (Eq. (81)], which corrects the dielectric function to in-
clude exchange and correlation effects, may be determined analytically.
In the long wavelength (q - 0, or macroscopic) limit, the static di-
electric constant is related to the eiectron gas compressibility, «,

11
as

' AwNzez
e'(q) - 1= — K , q=*0 limit (111)

q

where the prime distinguishes this dielectric constant from the Hartree

dielectric constant of the noninteracting electron gas, €(q), defined

by Eq. (80).
Note that
0 0
(€'(q) = 1) _x_
@ -1 -« ° (112)

where the superscript zero indicates the values appropriate to a non-
interacting electron gas. With some algebra and the formulas relating
£(q) and the dielectric constants [for example, Eq. (63)], this relation

becomes
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Ko 0
w=1l- f£(q)le'(q) - 1] =1 - £(q)[e(q) - 1) , (113)
which is valid in the long wavelength limit.
From the expression for e(q), Eq. (80), we findz
4me2kf mez
q-0 mhq 3rh kf
so that
KO
= le 1 - £(q)(e(q) - 1)]
q-0
2 4me kf me2
= lim (1 - - 57 - 3 , (115)
or
KO Zme2
S - 1 - — . (116)
gkfnh
This is the relation that determines §.
We calculate k and KO from the relation
1 3on
L e -, (117)
K 0 .2
9 QO

wvhere Eo is the electron gas ground-state energy. We write the energies
in terms of L which is defined as the radius of the sphere whose

volume is the average conduction electron volume, so that

3
T . (118)
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To calculate the compressibilities, we use the results from Sec. V
for the ground-state energies of the noninteracting and interacting

electron gas, Eg and EO’ respectively.

2
r ]

E, = <2-21 - 0916 _ 4 915 +0.031 g r>R
r s y
s

With the help of the relations

0
2
-, 4 3, 3z
QO z 3 T k3 , and
£
2

h

—5 = la, ,

mez 0

we may calculate KO/K and use Eq. (116) to arrive at
& = 0.916/(0.458 + 0.012 rs) . (119)

With the value r, = 3.939 a, corresponding to an atomic volume of

256 ag for sodium, we have
E=1.81 . (120)

We notice here that { is volume-dependent and is treated as such in our
calculations.

2. Determination of YB’ aB, B, and p. The remaining parameters

YB’GB’ B8, and ¢ have been determined by fitting to available data.
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We have chosen the value for Yg in the Born-Mayer repulsive poten-
tial, Eq. (76), to have the value determined by simultaneously fitting
calculated lattice energies to equation-of-state data for the family of

alkali halide salts.zo The value is

L o0.339x108 e
Yg
so that
-1
vg = 1.56 a (121)

Wallace21 determined the values of Gps B, and p by fitting the cal-
culated expressions for the total adiabatic potential and its volume
derivative to measurements of the equation-of-state properties of sodium.
The data included were the binding energy, the ionization energy, and
the bulk modulus at zero temperature and pressure. The requirement that
the pressure be zero at zero temperature was also used. He found that
these data could be fit with some arbitrariness remaining. This arbi-~
trariness was removed by requiring that the calculated average of the
phonon frequencies squared (<m2> as calculated by lattice dynamics)

also be fit. The resulting parameters are
ag * 10.5 Ry ,
3
8'37.Ryao , and

p = 0.50 a,

We discuss in detail the total system energy calculation and equa-

tion-of-state value determination in Sec. V.
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With these parameters determined, we have completely specified the
effective ion-ion interaction potential of Eq. (77). We now proceed to
calculate this potential and apply it to the molecular dynamics calcula-
tions.

B. Calculation of the Potential

We now calculate the ion-ion interaction potential for sodium, using
Eqs. (77)-(82) and the parameter values determined in the previous sec-
tion. For these calculations, which illustrate the factors involved in
the ion-ion interaction, we use the observed zero temperature and pres-

sure atomic volume for sodium of
3
Qo = 256 a, f

which yields a Fermi wave vector of

3#2 1/3
z
kf = ( o) ) = 00,4872

0

1. e(q). The static Hartree dielectric function is calculated us-
ing Eq. (80) and the result is the solid line shown in Fig. 2. It acts
as the dielectric function for an interacting electron gas without tak-
ing exchange and correlation into effect. It has large and small q

limits given by2

ST 3 S i MRG0 i S

11m 16 mezkg
e = 1+ —57— 123)
Q- 3th“q
and
4 mezk 2
1:3 E(q) = 3 2f b mez -1 . (12(‘)
[’
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Fig. 2.

The solid line is the static Hartree dielectric function, €(q),
as given by Eq. (80). The dashed line is the modified dielectric
function as given in the discussion following Eq. (123).
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€(q) has a logarithmic infinity in its second derivative at q = 2 kf,
which will have an important effect on the interaction potential, as
will be discussed later.

2. f(q). The interpolation formula £(q), which corrects the
electron screening because of exchange and correlation effect, is given
by Eq. (81) and is shown in Fig. 3. It varies smoothly from the expected
£(0) = 0 long-range limit to the f() = 1/2 limit, where the screening
effect is reduced by a factor of 2 because only electrons of anti-

parallel spin should interact in this limit with exchange taken into

account.11 With f(q) included, the relation between the total potential

W and the bare-ion potential WB Fourier coefficients is

Wy =W /1 ¥ (@ - DA = £@] (125)

so that the modified dielectric functiom is 1 + [e(q) - 1][1 - £(q)].
This function is shown as the dashed line in Fig. 2.
3. w and;fg' The local bare-ion pseudopotential matrix element

Bq
qu, discussed in Sec. I and given by Eq. (82) is the solid line in Fig.

4. The screened matrix element given by Eq. (125) is the dashed line in
the same figure.

Note here that the screening effect is the cutting off of the long-
range (small q) part of the potential, as expected. We also note that

in the small q-limit

2
lim -2(h° 2\ _ -2 -
w0 g —3(2m kf) fep= ~0.158 Ry , (126)

where we have used the éis f(q) = 0 and the small q-limit for the

Hartree dielectric function given by Eq. 124.
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f(q)

The interpolation formula for the approximate correction to the

49

:

] I—— ?"#v

:

?

d

1

R

o/

a ‘[27

| |

o/

e

8

0.0 1.0 2.8 3.0 4.0 s.0 6.0 r.0 0.0 9.0 0.0
atagh)
Fig. 3.

electron screening due to exchange and correlation effects, £(q),

as given by Eq. (81).
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The solid line is the local bare-ion pseudopotential matrix ele-
ment, wp,, given by Eq. (82). The dashed line is the screened
matrix egent given by Eq. (125).
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4. F(q). The energy wave-number characteristic given by Eq. (79)
is calculated easily using the results above, and it is plotted as a

function of q in Fig. 5. F(q) has more detail than this scale

graph shows, such as a second negative 'hump'" at about q = 5a 1 with a
0

magnitude of 1.0 x 10.7 Ry.

In the large gq-limit, F(q) goes to zero as

64 2710
lim F(q) = - 3o € °* (127)
q-® QO q
and in the small q-limit, F(q) goes to negative infinity as
. 22
LR pq = R (128)
4 Q
Oq

5. VINb(r)' We can evaluate the effective ion-ion interaction
due to the presence of the electrons in the ion-electron system. We

must evaluate the integral im Eq. (78), which is

Y] ©
- _0 sin qr 2
Vo (7) “2’/; F(Q) ==~ a'dq . (129)

It 1s instructive to look at plots of the argument of this integral;

i.e.,

QO sin qr 2
ARG = —5 F(q) 2229L ¢° | (130)
T qr

which are plotted for different r values in Fig. 6. This figure shows
that the absolute value of the integral will decrease with increasing

r because of the modulation of the sin (qr) term.
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The energy wavenumber characteristic, F(q), as given by Eq. (79).
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Arguments of the effective ion-ion interaction integral as given
by Eq. (130) plotted for different r values.
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The integral of this argument is evaluated numerically with the
help of a Simpson'’s rule integration subroutine and the following re-
lationship,
2 - b -]
f ARG dgq -f ARG dq +f (lim ARG) dq , (131)
0 0 b gqow

where the second integral is an analytical integral of the large gq-limit

of the argument.

Using the large q-limit for F(q) given by Eq. (127), we must evaluate

2,33

@ -84 z kft sin x
[(lim ARG) dq = ‘ 5 dx , (132)
Qo 3.71’2 br X

where we have changed variables in the integral from qr to x. This
integral may be evaluated using standard integration formulas and the
rational approximations to the sine integral of the form

®sin
[——-—-—S xdx ,
br =

given by Ref. 22.

In practice, the first integral in Eq. (131) is broken into NINT
intervals, starting at A, with each B wide to ensure that the Simpson’'s
rule integration is able to converge efficiently. The integrator uses
a convergence criterion parameter, EPS, to determine the accuracy of

each integration. The actual integration procedure is illustrated by

) A+B A+2B A+(NINT)B ©
f -/ +/ + / +f (large q limict) . (133)
0 A A+B A+(NINT=-1)B A+(NINT)B
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Breaking up the interval allows investigation and correction for in-
accuracies that may arise when Simpson's rule is used to evaluate
integrals that have positive and negative areas canceling. We performed

a convergence study of the VIND(r) integral and determined that the

values

NINT = 20 ,

B=1, (134)
1x 10-10 , and

6

A

EPS = 1 x 10

vielded results accurate to about 10_5, telattvé to the 1ﬁtegral values
we obtained for the well-converged solution. This value set was chosen
to evaluate the integrals for use in the rest of the study. The func-
tion VIND(r) calculated in this manner is shown in Fig. 7 and as the
solid line in Fig. 8,

We now investigate the VIND(r) behavior in the large r-limit.*

To do this we expand Eq. (79) for F(q) by letting

e(q) -1 - x
1+ [e(q) - LJ[L - £(q)] 1 = f(qQ)x °’ (135)
where
1
x=1-t@

We note from the values of f(q) and €(q) that 0 € f(q)<1/2 and 0 <

X < 1, so that [f(q)x]2 < 1. We, therefore, may expand Eq. (135) as

*Based on a calculation by Galen K. Straub, Los Alamos National
Laboratory.
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Fig. 7.
The effective ion-ion interaction, VIND’ as given by Eq. (78).
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1~ :(q)-x = x[1 + f(q)x + fz(q)x2 + f3(q)x3 4+ eee]
-1-7F UL 1 3, L
L-Fg * @ - o5l + 7@ - 75 + (136)

We use this expansion and evaluate the comtribution of each term
to VIND(r) by evaluating the integral in Eq. (78). The contribution of

the first term in Eq. (136) to VIND(r) is

2
-zre +z £ 3 TP 0(13)
4o r

The second term in the expansion Eq. 136 yields the following

(137)

integral.

in qr 2
sin qr q° dq

PP (138)

2
_Q_/"”<‘ o‘*)fw 2 (L )
wz 0 81re2 Bq e(a)
Now the infinite discontinuity effect in the static Hartree dielectric

function, €(q), becomes apparent. Harrison6 evaluates this expression

by integrating by parts. He obtains vanishing contributions in the
large r-limit for all terms except those containing the divergent second
The most

derivative of £(q). These yield a nonvanishing integral.

singular term goes as [cos (Zkfr)]/r3, which is the leading term in the

large r limit.

Using this result and Eq. (137), we see that the leading terms in

the large r-limit of VIND(r) are

' Daiin fvey s v ORI I #1413 95
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The first term corresponds to the coulomb contribution of the bare
ion potential and cancels the direct coulomb ion~ion interaction at
large r. The second term represents the Friedel oscillations typical
of screening caused by electrons in a system characterized by a sharp

1,5,6 This term gives rise to

cutoff of momentum at the Fermi surface.
the long-range oscillatory behavior of the ion-ion interaction.

6. ¢(r). We calculate the total effective ion-ion interaction
given by Eq. (77) as

zze2 B
o(r) = - + aBe + VIND(r) . (140)

The coulomb and Born-Mayer repulsive terms are plotted as the dashed
and dotted lines, respectively, in Fig. 8. VIND(r) and ¢(r) are also
plotted in this fiéure. The nature of ¢(r) is obscure in this figure,
other than the cancellation of the coulomb repulsion by the leading 1l/r
term in the large r expansion of VIND(r) given by Eq. (139).

The nature of ¢(r) is apparent from the plot in Fig. 9. We notice
the dominant repulsion for r < "6,5 ay» the minimum in the potential at
r = Bao, and the long-range oscillatory behavior as discussed above.
For convenience, we include here a plot of the force between pairs,

F(r) = :3%9:). (141)

in Fig. 10. The force is the value used directly in the molecular dy-
namics calculationas to determine ion motion. Values for both the po-
tential and force as a function of interatomic distance, r, are tabu~
lated in Appendix A.

These, then, are the effective ion-ion interaction potential and

force that will be used in our molecular dynamics calculations. We
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The total effective ion-ion interaction potential, ¢(r), as given
by Eq. (77). The dashed line is ¢(r) multiplied by 100,
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notice that they are dependent on the atomic volume QO, through the
Fermi wavenumber kf, so that new functions are required at each sodium
density calculated. Because the calculation of the potential and force
functions 1s lengthy, we will tabulate the results and interpolate from
the tables during a molecular dynawmics calculation. This procedure is
discussed in the next section.

C. Tabulation of the Potential and Force

Because each molecular dynamics calculation with the number of
particles that we are considering is inherently costly, we want to make
the potential and force information available in a manner which mini-
mizes the number of operations required by the molecular dynamics pro-
gram. To do this we tabulate the potential and force values and then
look up the values as needed.

There is a tradeoff between different interpolation schemes. Same
schemes are accurate for a relatively small number of points in the
table, yet require many operations to obtain a value. The simplest of
schemes, linear interpolation, requires a high point density but few
calculations. Because, in a molecular dynamics program, we must perform
many table lookups, and storage on the computer we are using (CDC 7600)
is not a serious constraint, we have decided to use a linear interpola-
tion scheme with emough points in the tables to ensure a negligible
logs of accuracy owing to the table lookup.

The potential and force functions are dependent both on interatomic
distance, R, and atomic volume, V. (For this discussion, we are using
notation convenient to the notation used in the computer program.)

Therefore, we must set up our tables and interpolate in both the R and

V dimensions.

4

-

TN

OPRE: L8 .. i, Dt it SRR

ot

, BBen g de




63

To illustrate table setup and the interpolation scheme, we will
outline the procedure for determining the potential, POT, and force,
F, once V and R have been specified.

The volume table is set up with a minimum volume VMIN, a maximum
volume VMAX, and a certain number of table values NV (see Fig. 11).
The constant interval between values is given by

VMAX - VMIN (142)

DELV = —o—— .

The radius table is set up in a similar manner with RMIN, RMAX, NR, and
DELR values specified.

V(IV) is the volume at the IVth position in the volume table,
R(IR) is the radius at the IRth position in the volume table, and
POT(IR,IV) is the potential at IR and IV, which are calculated from
pseudopotential theory as discussed in Sec. III.B [and similarly for
F(IR,IV)].

Now, given an arbitrary R and V within the table limits, we per-
form an integer divide (i.e., truncate the division to an integer) to
get

vV - VMIN
v SELV +1 , (143)

so that we know that V is positioned between V(IV) and V(IV + 1) in the

volume table.

At each of these volumes we find IR and IR + 1 and interpolate to

find
POT1 = POT at IV and R ,
POT2 = POT at IV + 1 and R
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A schematic showing the arrangement of the volume-dependent table.
NV is the number of points in the table.
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We may then interpolate on the volume to arrive at the value for the
potential at V and R given by
- v -~ V(1IV)
POT = POT1 + DRV (POT2 - POT1) , (144)
and similarly for the force
- vV - V(IV) _
F = F1 + DRV (F2 - F1) . (145)

We determined the appropriate density of points for these tables.
Calculations of the potential and force at different volumes and con-
stant radius showed an almost linear relationship, and five tables were

adequate to cover a range from 107% compression to 107 expansion from

normal density. For the R tables, a value of NR = 2000 was chosen, which

yields interpolated values that are precise to about 10-4, relative to
calculated values. The RMIN and RMAX values include the expected inter-
atomic distances.

The following values were chosen for the table setup.

RMIN = 4.0 a,

RMAX = 30.0 a,

2000

S

3 (146)
230.01 a, (10% compression)

z
<z

;

281.12 ag (10% expansion)

NV =5

Curves obtained from the tables for the 107 compression and ex-
pansion volumes are shown in Fig. 12 to illustrate the density depend-

ence of the potential.
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The total effective ion-ion interaction potential for the 10% com-
pression (Qp = 230 38) and 10% expansion (R = 280 al) conditions.
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IV. SETUP OF THE MOLECULAR DYNAMICS CALCULATIONS

We have described the molecular dynamics calculations and the
pseudopotential method by which we calculate the effective pair inter-
action between ions. A given molecular dynamics calculation proceeds
as described in Sec. II.B, with the forces needed in Eq. {9C) read as re-
quired from the tables set up as described in Sec. III.C. In this sec-~
tion we discuss the setup of our particular calculations on sodium,
and describe the units, initial conditions, and crystal configurations
for the hexagonal close-packed (hcp) and body-centered (bcc) phases of

sod ium.

A. Units

We specify the energy (E@), distance (X@), and mass (M@) units for

these calculations as

n

E® = 1 Rydberg = Ry = 13.60559 eV = 2.17971 x 10 —erg = e?/2a

0 t ]
X¢# = 1 Bohr radius = ag = 0.529167x10'8 cm= 0.529167A = ﬁz/mez » (147)
M@ = 1 molecular weight of sodium = 22.9898 g/mole = 3.81731x10™ > g

Note that in these units, the mass of a sodium ion is unity. From these

specified units we derive the time and velocity units as

L
td = x@(%g) - 7.00281 x 107° s

and (148)
X9

vl = 0 = (0,755650 cm/us
Pressure i{s given in Ry/ag. We will use kelvins (K) as our temperature

unit with Boltzmann's constant given by

6

k = 6.33359 x 107~ Ry/K

g
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B. Initial Conditions

To solve the difference equations described in Sec. II.B, we must
supply initial positions and velocities for the particles in the system,
such that both the expected crystal configuration and approximate tem-
perature are predetermined. In the next section we discuss the deter-
mination of the initial particle velocities. In the following two
sections we describe the initial positions for hcp and bcc crystals of
sodium.

1. Particle Velocities. We determine the initial velocities to

satisfy the requirements that the center of mass velocity is zero and
tﬂat the average of the velocities squared will give twice the tempera-~
ture desired. We say twice here because, with the particles placed at
their lattice positions, all initial energy will be kinetic and we ex-
pect about half to be partitioned to potential energy as the calcula-
tion proceeds and equilibrium is attained.

The computer program selects initial velocities by using a random
number generator to choose the initial Ax, Ay, Az for each particle to
be between -1 and +1. These velocities are then scaled [see Eq. (109)]

so that

KE =

Z|=

N

2 .2 .2
3 -]z;m(xi +iiesh =2 (% kT (149)
=1

where the factor 2 is included according to the discussion above.

The initial velocity distribution is not normal. We expect that, as
the calculation proceeds and the system approaches equilibrium, the
distribution will become normal. This helps determine whether or not

the system has attained equilibrium and will be discussed in Sec. IV.D.
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Note also that the temperature is not specified precisely as an initial
condition. We specify the initial conditions as outlined above, and
when the system equilibrates, we calculate the system temperature from
the average of the kinetic energy as given in Eq. (109).

2. hcp Initial Positions. We specify the initial particle posi-

tions for hexagonal close-packed crystals by placing the particles at
the perfect hcp lattice sites. Figure 13 shows an hcp lattice, and the
lattice vectors a, b, and ¢ in the Cartesian coordinate directions.
With these lattice vectors there are four particles per unit cell,
placed at positions given in Table I.

These unit cells are repeated throughout the calculational volume
to yield an hcp structure with one set of close-packed planes normal to
the z-axis. For a perfect hecp structure, which corresponds to a close-
packing arrangement of spheres, the relationships between the lattice

vector magnitudes and the volume per particle are2

b=a'3 , c=a/8/3 ,

and (150)
QO - -'/4—3-_ azc = éi
2
TABLE I
PARTICLE POSITIONS WITHIN AN hcp UNIT CELL
Particle p.3 -y 2z
1 0 0 0
2 1/2 a 1/2% 0
3 1/2 a 1/6 b 1/2 ¢
4 0 2/3 b 1/2 ¢
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Fig. 13.

The hexagongl closg—packed structure with lattice
vectors 3, b, and ¢ indicated. The four particles in
a unit cell are numbered.
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The radial distances to the shells of particles relative to the origin
placed at one of the lattice sites and the number of particles within a
shell are shown for a perfect hep lattice in Fig. 1l4. The bec posi-
tions are also shown on this figure, along with a plot of the effective
pair potential.

An hcp crystal produced by the molecular dynamics program is showm
in Fig. 15. 1In this figure the near neighbors within each close-packed
plane normal to the z-axis have been connected by lines for clarity.
The dashed and dotted vertical lines indicate the relative positions of

the planes. Figure 16 shows two such planes as viewed looking down the

z-axis. Here we have noted the traditional A, B, C designations for the

relative positioning of the planes. For an hcp structure, the close-
packed planes are stacked in an ABAB--- arrangement. For a face-cen~-
tered cubic (fecc) structure the stacking is ABCABCABC:---.

3. bec Initial Positions. The lattice positions of a body-cen-

tered cubic structure with an a' lattice constant (cube-edge dimension)
are determined easily. The distance between a particle and its nearest

neighbor 1is R1 and

-3
Ry 5 a' . (151)

There are two particles per unit cell so that the volume per particle

is

(152)

The position vectors ﬁ(N) to all points in the lattice may then be

specified2 by
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Tt T

Ty,
-

b4

Fig. 15.

The hexsagonal close-packed structure as set up by the
molecular dynamics program. Solid lines are drawn
between nearest neighbors in each close-packed plane
normal to the z-direction for clarity. The dashed
lines indicate the relative positions of the planes
marked by A and B.
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Fig. 16.
Close-packed hcp planes viewed down the z-axis. The
dashed lines indicate an A-plane in Fig. 15. The solid
lines indicate a B-plane. For an hcp structure, planes
which occupy the C positions do not occur.
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R
- 1 N
R(N) = ;g (le + N29 + N3z) s (153)

where N Nz, N3 are integers and are constrained to be either all even

l)
or all odd. This constraint is given equivalently by requiring that
(N1 + NZ)' (N2 + N3), and (N1 + N3) be all even. The distance to each
particle is given by

Ry 1/2

IRy | = - o2 + N2+ ¥d) . (154)
3

Using these relations we easily generate the points in a perfect
bee lattice with a computer program and we have used this method to
study perfect lattice calculations of the total.crystal potential, as
described in Sec. IV.C.

However, for the molecular dynamics calculations we ~hoose to use
a different but equivalent method. We want to create a bcc structure
that is oriented to resemble as closely as possible the hcp structure
that we are studying. We will create a bcc system with (110) close-
packed planes normal to the z-direction because our hcp close-packed
planes are normal to the z-direccion.*

This may be accomplished by setting up a face-centered tetragonal

(fct) lattice with lattice vector magnitudes given by
a=c=/2b=/2a" , (155)

where a' is the desired bcc lattice constant. This structure is shown

schematically in Fig. 17. The dashed lines outline the cubic box,

*
Based on a procedure by Brad Lee Holian, Los Alamos National Labora-
tory.
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Fig. 17.
A face-centered tetragona’l structure with a = ¢ =
/2 b appropriate to produce a body-centered cubic
(bce) structure with (110) planes normal to the
z-direction. The four points in a unit cell are
numbered. The dashed lines indicate the bcc struc-~

ture.
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The bece (110) planes are the faces of the fct structure normal to the
z-axis.

This crystal structure has four particles per unit cell with
positions given by Table II and indicated in Fig. 17.

Figure 18 shows the bcc lattice as set up by the molecular dy-
namics program. In this figure a body-centered cube is outlined and
lines are drawn through the cube diagonal and body-centered particle to
indicate the (110) plane. Figure 19 1s a drawing of the same lattice
with lines drawn connecting the nearest neighbors within a close-packed
plane. The numbers 1 and 2 designate relative positions of one plane
with respect to another. Figure 20 shows a "l1" plane and a "2'" plane
as viewed looking down the z-axis. These last two figures may be com-
pared with Figs. 15 and 16 for the hcp lattice. We note here, in pass-
ing, that a slight compression of the planes in Fig. 20 in the y-direc-
tion to form hexagonal planes and a relative shift between planes 1 and
2 in the x~direction will create a hexagonal cloge-packed structure (or
fcc structure, depending on the stacking). The radial distances to the
shells and the number of particles in each shell for a bcc lattice are
shown relative to hcp structure and the effective pair potential in Fig.

14.

TABLE II

PARTICLE POSITIONS WITHIN THE fct UNIT CELL

Particle X _y 2z
1 0 0 0
2 1/2 a 1/2b 0
3 1/2 a 0 1/2 ¢
4 0 /2b 1/2 ¢
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Fig. 18.
The body-centered cubic structure as set up by the
molecular dynamics program. The lines outline the
basic cube and indicate the close-packed plane
through the cube diagonal and body-centered particle.
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Fig. 19.

The same body-centered cubic structure as in Fig. 18
but with lines drawn between the nearest neighbors
within a close~packed plane for comparison with the
hcp structure of Fig. 15.
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C. Determination of Run Parameters

In this section we determine run parameters for use as input to the
molecular dynamic calculations. These parameters are the time step Atof
Eqs. (90)-(92), the maximum range of the potential RMAX (see Fig. 1), and
the system size. There is no standard procedure for choosing these
parameters and generally each must be investigated to minimize the ef-
fects on the calculations. We discuss how we have determined each of
these parameters for use in our calculations.

1. Determination of the Time Step. The time step must be kept

small enough that errors of order (At)3 inherent in the central differ-
ence scheme described in Sec. II.B are negligible. Another way of think-
ing is that we must not let the particles in the system move very far
before stopping and recalculat’,g the forces on them. Also, we must not
have At so small that the calculations require an inordinate amount of
computer time.

To evaluate At, we investigate the environment that a single par-
ticle in our system experiences. We do this by performing a '"cell model"
calculation where one particle is allowed to move in the force field of
all the others which are constrained to their perfect lattice positions.
Doing this, we can map the potential surface for a particle in this sys-
tem.

We set up a bcec lattice with near neighbor distance R1 of 6.93 a,,
which is appropriate to an atomic volume for sodium of 256 ag. A plot
of the potential surface for a particle moving in the (001) (or xy)
plane in the +x and +y directions is shown in Fig. 21. This cell model
potential well is quite harmonic and symmetric, as shown in Fig. 22,

where the potential of a particle moving along three crystal directions
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is plotted versus the square of its distance from its perfect lattice
site. The directions were chosen to indicate the most and least dras-
tic paths for the particle. The three directions shown are (1) the N
{111] direction which is toward the body center (the nearest neighbor),
(2) the [110] direction which is across a cube face diagonal, and (3)
the [100] direction which is down a cube side.

The curves are linear in r2 out to at least an atomic unit and we,
therefore, represent the potential in this region by a harmonic poten-

tial of the form

e e o,

2

o(z) = % ke +C . (156) .

We calculate the slope of the line for the [111l] direction (the

largest slope of the three) and find that
2
k = 0.0072 Ry/ao ,

which allows us to calculate the period of a harmonic oscillation in

this potential as

3

=8

T = ZﬂJ =74 T , (157)

where T@® is the time unit evaluated in Sec. IV.A. We now use a conven-

s o ol 1t

tion which is based on experience and says that a conservative time

step estimate should allow a particle to move 1/60th of its period per
time step. Using this estimate would yield a At of about 1.0 TP. We
will use this number for our calculatioms.

2. Determination of RMAX. We choose the range of the potential

RMAX (see Fig. 1) with two thoughts in mind. We want the effect of all

particles farther away from a given particle than RMAX to be negligible
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and we want to minimize the effect of particles moving from outside to
ingide the RMAX range. Noting the small magnitude of the oscillations
in the potential and force functions of Figs. 9 and 10, we intuitively
feel that an RMAX greater than 16 a, would be suitable. To get a
better indication of the effect of RMAX on the calculations, we will
calculate the perfect crystal total potential per particle for the becc
lattice for different values of RMAX.

The total crystal potential per particle is given by Eq. (106) as

N N'
1
¢ = L Zz JCHR I (158)
i=1j=1
where
Ty " Iri - rjl . (159)

To calculate this for a perfect crystal, we arbitrarily place one par-

ticle at the origin (particle i) so that

1 1
o = ﬁi[i;l ¢(r1j)] . (160)

i=]

The sum over i is N because the result for all particles in a perfect
lattice is identical. We take the sum on j to be over all the other

particles. The result is

N
1
0 =32 0lry) - (161)

To calculate the crystal potential, it is inappropriate to extend

the discrete sums to infinity. Additionally, the values for the

3
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molecular dynamics system will be summed discretely using Eq. (106) and
will be cut off at RMAX, where RMAX must be kept to a reasonable value
so that the length of the calculations does not become prohibitive.

We will, therefore, separate the discrete sum into a discrete part
(subscript d) out to RMAX and a continuous part (subscript c¢) from RMAX

to infinity, so that
$ = Qd + ¢c , (162)

where the discrete part is given by
<
LI RMAX

J
1
0 =3 jz:z NI (163)

We calculate the continuous part by assuming that the density
approaches a uniform distribution at large r. For a uniform density
with one particle assigned to each volume per particle, Qo, the system

potential is given by

o = ?221 dr 26() . (164)

00

The continuous part in Eq. (162) is given by

-2 dr r2¢(r) . (165)

The total number of particles within a sphere of radius r is
plotted in Fig. 23 for the hcp and bcc crystal structures and the uni-

form density distribution as given by (4n/390)r3. Also shown in this
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Fig. 23.

Number of particles within a given radius vs radius for the hep
and bce crystal structures and for a uniform density distribu-
tion. The vertical lines on the r-axis indicate the positiomns
of the crystal structure shells and the height of these lines
indicates the mmber of particles in each shell.
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figure are the positions and number of particles in each shell of the
crystal structures.

To calculate the continuous contributions to the potential, we will
use the large r limit for the potential. As discussed in Sec. III.B.S5,

in this limit the potential goes as

cos Zkfr
3
(2kfr)

We calculate this term to be

2.2
-18 7z Vorg COS 2kfr

3
f (2kfr)

o(x) large r = ¢A(r) = € (166)

where Ef is the electron kinetic energy at the Fermi sphere and w2kf
is the magnitude of qu/e(q) evaluated at q = 2kf. For an atomic volume

of 256 ag, which yields a Fermi wavenumber of 0.4872 a_ ™, the value for

0
w2kf is 0.0067. We call ¢A(r) the asymptotic form of the potential func-
tion. This asymptotic form is plotted in Fig. 24. The dashed line in
this figure is the actual potential function [d(r) of Eq. (77)}.

Using the asymptotic form, we calculate the continuous part of the

crystal potential to be

2

o ~18mz wgk
o = kg [-c1(2k - ax)| (167)
c - 3 € f

80, £

where Ci is the cosine integral as defined in Ref. 22.
We calculate the total crystal potential using Egs. (162), (163), and

(167). The results are plotted in Fig. 25. Large jumps are noted in the
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The dashed line 1is the actual potential, ¢(r).
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value as shells of atoms in the structure are included in regions where
the magnitude of the potential function is appreciable. The results
shown in this figure indicate that a choice of RMAX greater than 16 a,
is suitable because the magnitude of the potential is small and the
effect of particles outside RMAX can be suitably accouanted for by the
continuous contribution ®c. There is one more point to consider before
investigating the magnitude of this contribution.

As mentioned at the beginning of this discussion, RMAX must also
be chosen to minimize the effect of particles moving from outside to
inside the RMAX range. This is done by choosing RMAX to coincide with
one of the zeros of the force function. In this way, a particle sitting
at RMAX would have seen zero force whether or not the potential was cut
off there.

With the above discussion in mind, we have somewhat arbitrarily
chosen RMAX to be at the zero of the force function after one positive
hump and one negative hump (see Fig. 10). This occurs at RMAX = 21.65

for sodium with a volume per particle of 256 ag. At this RMAX we

The continuous contribution to the potential is less than 17 of its

a .
° i
calculate the following values for ¢, Qc’ and their ratio. i
o -1.154 x 1072 b

5 3

o 1.1 x 10 2

¢ ~4

c

‘§

value. Because this value is independent of the details of the molec-

ular dynamics system structure and is much smaller than the absolute

accuracy of our calculations (see discussion at the end of Sec. V), we

will neglect it for this study.
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Because the potential and force functions depend on the atomic vol-
ume, the appropriate value for RMAX will also vary. Figure 26 is a plot
of the RMAX value appropriate for each atomic volume in our range of

interest. A linear fit of the points of this plot yields
RMAX = 0.008063 QO + 19.59 . (168)

We use this value of RMAX for our molecular dynamics calculations.

3. Determination of System Size. The system size is determined in

the molecular dynamics program by specifying the number of unit cells to
be stacked in a given direction. Lx’ Ly, and Lz are integers that spec-
ify the number of unit cells in each Cartesian direction, respectively.

If a, b, and ¢ are the magnitudes of the lattice vectors in these direc-

tions, then the lengths of the sides of the computational box are

xL =L -a ,
x
yL = Ly +b , and (169)

zL =L - ¢
z

We are constrained by the minimum image convention, discussed in
Sec. II.B.3, so that each box length must be at least twice the magni-
tude of the range of the potential, RMAX. We mentioned in Sec. IV.B.2
the possibility of the hexagonal close~packed planes normal to the z-
axis being stacked either in the ABAB-.. (for hcp) or ABCABC--- (for
fce) arrangement. Therefore, we would like to have a multiple-of-six
number of close~packed planes in the z-direction so that neither of
these possibilities is prohibited by the periodic boundary conditions.

With these constraints in mind, we choose for the hcp structure

L =7 ,L =4 ,L =6 , (170)
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Values of RMAX plotted vs atomic volume.
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and for the bcc structure (in reality a face-centered tetragonal as
discussed in Sec. IV.B.3)

L =4 , L =7 ,L =6 . (171)

Because each of these has 4 atoms per unit cell, they contain N = 672
particles and have 12 close-packed planes normal to the z-axis. Figures
27 and 28 are schematics of these structures in their initial, perfect
crystal configuration.

To investigate the system size dependence, we have calculated the
temperature rfor bcc sodium for gystem sizes N = 672, 864, 1372, and
2048 at input temperatures of 50 and 300 K. The results of these calcu-
lations are shown in Fig. 29. It is obvious from these results that no
definitive statement may be made regarding the N dependence other than
it is small and within +17 for these large systems. Therefore, we per-
form our calculations using the 672-particle systems described above.

D. Example Calculations

To illustrate the molecular dynamics technique and the approach to
equilibrium, we describe two calculations in detail. The calculations

are of the bcec structure described in Sec. IV.B.3, performed at an atomic

3

0 and with input temperatures of 50 K and 300 K, respec-

volume of 256 a
tively.

These calculations were run for 300 cycles, which corresponds to a
time of 150 time units or 1.05 x 10-12 seconds. The time histories of

the system energies per particle are shown in Fig. 20. The solid lines

are the total (potential plus kinetic) energy, the dashed lines are the

potential energies, and the chain-dashed lines are the kinetic energies.
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Fig. 28.
The hexagonal close-packed structure for a 672-particle system

as set up by the molecular dynamics program.
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It is obvious from these figures how the energies equilibrate from the

initial conditions where the particles are placed at perfect lattice
sites and assigned initial velocities as discussed in Sec. IV.B.l. As
the particles move from this initial, unphysical condition, part of the
energy is partitioned to potential energy and the system equilibrates
with the total energy remaining counstant.

Once the system relaxes from the initial conditions and begins to
oscillate about the equilibrium values (this happens at about 45 time
units for these calculations), we begin our time average and average to
the end of the calculation.

The average of the kinetic energies yields the temperature by way
of Eq. (109). The average total energy is the structure~dependent en-
ergy of the system, Es, which will be added to the volume-~dependent
energy contributions, as discussed in Sec. V, to yield an equation-of-

state point, E (QO,T), in volume and temperature space. Table III

TOT
gives the Es and T values obtained from these calculations.
An indication of the thermal motion of the particles in a system

may be obtained by calculating their atomic distribution. It is given

by
el d(r) (172)
TABLE I1I
RESULTS OF THE EXAMPLE CALCULATIONS FOR bee SODIUM
WITH INITIAL CONDITIONS OF 50 K and 300 K
3
f9(ag) T (K) Eg (Ry)
256 50.17 + 0.2 =0.0105949 + 1. x 1077
256 293.38 + 0.6  ~-0.0058439 + 3. x 107/
r b —atuiind ~ Bl _'.' ‘;"
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where d(r) is the actual particle density at a radius r from a raference
particle. We calculate this distribution for each particle in the sys-
tem and divide the total by the number of particles to obtain the aver-
age atomic distribution for the system. Figures 3la and 31b show the
atomic distributions for the systems described above. The solid lines
are the distributions at = jiven instant. The dashed lines are the
distributions averaged o+sr 100 time units, which indicate the perfect
lattice positions about waich the particles are oscillating (compare with
Fig. 14). At 300 K {¢ is difficult to distinguish the structure of the
lattice.

A more qualitative indication of the thermal motion of the par-
ticles is seen from Figs. 32a and 32b which are plots of the positions
of the particles at a given instant seen looking down the x-axis. In
the perfect lattice position, each y,z lattice coordinate would show
only one point. At 300 K there are indications that some particles may
have moved out of their perfect lattice positions. We will investigate
this more later when we discuss melting.

As mentioned in Sec. II.B.4, an indication of system equilibration
is that the kinetic temperatures be isotropic. The kinetic temperatures
are Tx’ Ty, and Tz, and are calculated from the velocity distributions
in the x~, y-, and z-directions, respectively [see Eq. (110)]. Figures
33a and 33b are time history plots of the system temperature (solid line)
and the three kinetic temperatures for the example calculations. The
temperature is seen to be isotropic within the fluctuations of the sys-
tem temperature.

For a final topic regarding these two example calculations, we

discuss a measure of how normal the velocity distribution is. Such a
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Fig. 33.
The temperature (solid line) and kinetic tempera-
tures (Tx,Ty,Tz)(dotted, chain-dotted, dashed lines)
for bcc sodium at atomic volume of 256 aj and tem-
peratures of a) 50 K and b) 300 K.
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measure is the kurtosis [see discussion after Eq. (110)]. The nth-order

central moment of the N-particle distributionm 1is given by

N
1 -\ 0
- = . - 7
M NZ (x; - %) (173)
i=1
where x, is the value of x for the ith particle and X is the mean. The
kurtosis measures the "degree of peaking" of the distribution and may be

defined in two different ways. The first kurtosis, denoted by 8,1319

B=-— . (174)

Hy is the second-order central moment and 1s the square of the standard

deviation, o = (kT/m)%. The second definition of kurtosis we denote by

c.23
C =y, - 32 (175)
U4 UZ .
We note that
8-3+%=3+——c——2 ) (176)
o (kT/m)

B is equal to three for a normal distribution and this value for B is
used as a standard to indicate how normal a distribution is.l9 C is
zero for a normal distribution.

It is not possible to precisely predict the behavior of the kur-
tosis. However, we may derive an expected dependence from a simple
model and then compare the calculated kurtosis with it to see if the re-

sults are consistent. As we discussed in Sec. II.B, the molecular dy-

namics system forms a microcanonical ensemble with the additional
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*
constraint that the system momentum is conserved. Holian has calculat-
ed the kurtosis for a microcanonical ensemble of a one-dimensional chain
of hard rods. His calculation is presented in Appendix B. For large

N, he predicts that the kurtosis, C, is

2
6(,kT
¢--¥&)

-

e

so that we expect C to vary as TZ/N. Figure 34 is a time history plot

of the measured kurtosis C times the factor N/(kT/m)2 for the 50-K and
300-K example calculations. We see that C rapidly increases from its
large, negative, initial value as the system equilibrates. The value
for CN/(kT/m)2 equilibrates, roughly, to between ~100 and O for both
cases.

With these numbers, we calculate R.

2
CN/(kT/m)< _ J3.0
» GG {

2.85 (178)

The measured values of C are consistent with the results based on the
simple model of Appendix B. The value for 8 of 2.85 (close to 3) indi-
cates that the distribution may be adequately represented by a normal
distribution.l9

In this section we have discussed two example molecular dynamics

calculations. We have found that the system we are using is adequately
represented by a normal distribution of velocities and is reasonably
isotropic. To determine the equation-of-state points that will become

our data for studying the equation of state of sodium, we will follow

*
Brad Lee Holian, Los Alamos National Laboratory.
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the procedure outlined above. After allowing the system to relax from
the initial conditions, we take a time average of the calculated values
to vield an average system temperature and average structure-dependent
energy. This structure-dependent energy is added to the volume-depend-

ent terms, as described in Sec. V, to yield an equation-of-state point.
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V.  CALCULATION OF THE TOTAL SYSTEM ENERGY

We now determine the expression for the total system energy. In
developing the effective ion-ion interaction potential of Sec. II.A,
we neglected the terms that were dependent only on the volume of the
system and not on the detailed ion arrangement. We will here evaluate
these terms in a consistent manner so that they may be added to the en-
ergy calculated by the molecular dynamics ptograﬁ to yield the total
system energy. We will call these terms 'volume-dependent terms' (Ev)
and the molecular dynamics energy the "structure-dependent terms” (ES).

The total system energy, E is given by

TOT’

ETOT = '1'I + VI + Ee = TI+ v , (179)

is the ion-ion potential,

21 as
1

the sum of the coulomb and exchange repulsion terms of Eqs. (75) and

where TI is the kinetic energy of the ions, VI

and Ee is the total conduction electron energy. We write V

(76).
2.2 ’ =Y. r
- Slgyrziet 1 B 1j
Vi® Vst RT3 2 r,, T2 *ge (180)
13 13 1]
The sums are over all ion positions, where rij is defined by
- ->
r,, = lr, -r,| (181)

ij bl i

and the factors of 1/2 in Eq. (180) take into account double counting.
To keep track of the volume-dependent terms in the total conduction

electron energy, Ee’ we evaluate the electron energy terms of Eq. (13)

in a slightly different, but entirely equivalent manner. We rely on

the local pseudopotential approximation to write [see Eqs. (34), (56),

and (57)]
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1 -13-7 3
<x'€w1?+">-—fw VI r =w =5 . 182
W] q s (r)e =W =S (182)

We use the subscript 0 to denote q = 0 terms and we, therefore, write

Eq. (13) for the electron energy in the kth state as

E =g v W+ WH_g (g = ekﬂ)-l , (183)
q

where the prime on the sum indicates that the q = O term is omitted.
We have constructed the local pseudopotential, which consists of bare-

ion, screening, and exchange and correlation terms given by Eq. (39) as

Wl W+ W =+, (184)

where, by Eq. (71)

WB =W, + wc . (185)

wz is the coulomb part of the bare-ion potential and WC is the core re-
pulsion part.

To calculate the total conduction electron energy, we must sum Ek
over all the occupied states and subtract off the electron-electron
coulomb self-energy, Eee’ and the exchange and correlation energies,
Exc’ which are double-counted in the sum ZEk.

The coulomb self-energy is given by Eq. (52) as

Q Q ay
Eee 2 Z dq ws-q 7 dOwsO + 22 dq ws-q ’ (186)
q

where here we include the volume-dependent q = 0 term.
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In dealing with the exchange and correlation effects, we have as-
sumed that they may be approximated by a local one-electron potential2
(see Sec. II.A.5). Wallace2 discusses the approximation for exchange
that depends only on the density of the conduction electrons. The total
exchange energy of the conduction electroms in their ground state is

assumed to be
Ztﬁ(fw:(?)x(?)wk(?) dr (187)
k

where X(r) is the operator that represents exchange and correlation and
is a function of the density only. He uses a variational calculation to

relate the exchange potential Wx to X by

W= %g_xl , (188)

where d is the conduction electron density. He evaluates the exchange

and correlation double-counting correction2 as

. QR !
B, = -0y(Xy = Wo) + 5 zq: Weg (189)
so that the total double-counting correction is

o 2 o'
B +E =3 dgi - (X = W) +3 ] d¥grg + (190

We may now write the total conduction electron energy as

E, -Z nE - (B, +E ) . (191)
k
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The sum over the occupied states is
1]
Tk L ms, oy + T wa
k k q

where we have used the expression for the Fourier component of the
density dq of Eq. (45) and d0 = z/Qo. We arrive at the following ex-

pression for the total conduction electron energy:

Q Q '
E, -¥ g + Nty - 3 dgW_ o+ o (Xy - W) + E}: d =W O
q
(193)
At this point we must digress for a moment to discuss how the

total adiabatic potential, V = VI + Ee’ is evaluated for a crystal

structure. From Egs. (179), (180), and (193), V 1is given by

yor
-1 z e? B ij Q
v 2 zZaE +an€ * N2l - 2 doVso
a ag’ -
+ Ry =W ) T da@i_ =W ) (194)

The last term in this expression is evaluated using the relations of

Sec. II.A to be
Q! '
5§q dq(w_q " W) =N Eq SqS_qF(q) =E, - (195)

This is the band structure energy of Eq. (30) with F(q) given by Eq.
(79) so that the expression includes the screening, exchange, and cor-
relation effects as discussed in Sec. II.A. Note that the first sum in

Eq. (194) is divergent as are the wso term [see Eq. (53)] and the wzo

ta + Sl bl

YD it irscionn, o i ot A SN SIS 4 4 4.5 ML R A




4 s

Y~z

.

E______________-;---

Ve —

112

part of wo [see Eq. (72)]. A standard evaluation of the first sum is to i
use the Ewald mechod2 whereby the first sum in Eq. (194) 1is split into ‘
two sums, one in q space and one in real space. The divergent term in

this sum cancels with the ws and wzo term32 so that the expression for

0
V is finite. The band structure energy 1is evaluated readily for a per-

fect crystal because the structure factors are delta functions about the

reciprocal lattice vectors, Q, and
1]
B =N FQ (196)
Q

which yields a finite result. W’allace2 discugsed this method in detail -
and used it to evaluate the total adiabatic potential for sodium and
potassium.21

For our purpose here, however, we are calculating the terms for the
adiabatic potential of Eq. (194) differently and we must ensure that we
are properly accounting for all the terms. Having restructured the gq-
space sum for the band structure energy of Eq. (195) in terms of a real

space sum of the effective interaction, (r), over arbitrary ion

Vivo
[see Eq. (31)], we note an obvious difficulty since the

1,6

positions

sum

Z Voo (T iy) (197)
ij

TORT N RRNEE N WL T T

is divergent because of the leading 1l/r term at large r [see Eq. (139)]

in VIND(r)'

The difficulty arises because the q-space sum of Eq. (195), origi-

nating from the perturbation calculation [see Eq. (13)], explicitly

o
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leaves out the divergent q = 0 term, yet we have reintroduced it by
transforming to the sum in r space, which we take to infinity. To
correct for this discrepancy, we allow the q = 0 term to be part of
the q-space sum when we restructure

N SS F 198
2SS F@ (198)
q
as
:
| 1 L}
22 Vi 157 +E Fl@) (199)
ij q
where
2 -14-?
Vo™ = § Z F(q)e ’ (200)
q

which are the same as Eqs. (31) and (32) with the primes missing from
the q sums. Ebs’ as defined here, does not have a finite value. Note

that, with the help of Eq. (195),

’ Q
N S F - NE SS F +NSS F =%y d (W -W
qz qs_q (@) - S-q (q) a5~q (q)lq.0 2Zq q( q sx_q)

’
= 8 - {2 -
qu: (g = Vg + 3 40y =¥ ) (201)

so that we may write for the total adiabatic potential

—————
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1 ''z%e 1 ‘yBrij Q
v EZ r +22°‘Be 4'Zk“kek*'Nzwo’E"owso

-2 - 9 -
+0do Xy = W) - Fa iy -+ S dqW_g =Wy ) - (200)
q

The last sum is now, in a consistent way, equal to

1 {]
5%: Vi (Fay) +Eq F(q) . (203)

The terms may be combined and arranged to yield

2.2
e

- 1L <«'|z “YBT14 1
N ]‘v 7% 2 [rij + age + VIND(rij) +-§Zk: nkek

W
0 x0 1
+z<—2 + Ky -5 >+§ Z F(q) . (204)
q

l This is the expression for the total system potential, which is added to

— e e

the kinetic energy of the ions to yield the total system energy of Eq.

179).

E =T +V="T_+V

e
TOT 1 I ¥ Ee ’ (205)

The term in the square brackets of Eq. (204) is the effective ion-ion

interaction, #(r), of Eq. (77) and the 1/r coulomb term is canceled at

large r by the leading -1/r term in VIND(r), as discussed in Sec. III;
therefore, all the terms in Eq. (204) are finite.

The ion kinetic energy is the time-averaged molecular dynamics
kinetic energy, as discussed in Sec. II. The sum in the brackets of

Eq. (204) is the time-averaged molecular dynamics potential energy.
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The sum of the two is the total structure-dependent system energy, Es,
and is calculated by the molecular dynamics program as discussed in
Sec. III.B.5. The remaining terms of Eq. (204) are the volume-depend-
ent terms, Ev, which must be calculated separately. We will now evalu-
ate these terms.

As in Sec. III.A.1, we find it convenient to write the volume-de-
pendent terms as functions of rs, the radius of the sphere whose volume

is the average conduction electron volume,

9

3 0 . (206)

-] z

We have evaluated % Z & in Sec. TII.A.2 as an integral over the
k

Fermi sphere to arrive at the average kinetic energy of the electrons

times the valence

%Z“ksk’z%ef’z%” . (207)
K T

wo is given by Eq. (126), so that

zW
—EQ - %5 e = -z(1.22772) Ry . (208)

£ 2
r
s

z

To evaluate 5 wxo we use Eq. (61) to write

2
z ~4Te
W = lim —— £(q) dg - (209)
2 "x0 2 q

x 0 gq

ﬂ
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Wwith Eq. (81)
2
£(q) ~ —5+— (210)
29" + £kg)
and
z
4 Fo. , (211)
we see that
zZW 2.2
X0 =Mz e . _(0.407258) = L ry . (212)
2 2 g r
figSke s

The remaining volume-dependent term is % Z F(q), which we convert
q
to an integral, so that

f
Frr@ =5 [ @ (213)
q CUER

This integral is evaluated by numerical integration using the same pro-
cedure by which we evaluate the integral of Eq. (78), as described in
Sec. III.B.S5.

Xo is the total exchange and correlation energy per electron for a

uniform electron gas,2

Xo = Ex + ec . (214)

11

€ is the Hartree-Foch exchange energy and is calculated to be the

standard result

y . (215)
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We approximate the correlation energy per electron, sc, using the
Pines-Noziéres formula.ll They interpolate between expressions that are
valid in low-q and high~q regions in the same sense as the Hubbard in-
terpolation formula discussed in Sec. II.A.5. The Pines-Noziéres formu-

la yields

2e, = z(-0.115 + 0.031 2n rs) . (216)

All of these volume-dependent terms are evaluated separately and
added to the molecular dynamics results. Values of the individual terms
evaluated at an atomic volume of 256 ag are given in Table IV. Table V
gives the total volume-dependent contribution to the system energy for
several different volumes. This table also gives the results of the
molecular dynamics calculation of the static (T = 0) potential energy
per ion for bcc sodium. The sum of the two terms is given in the third

column and is the total static potential of the system at the volume

delicate interaction between the structure- and volume-dependent terms
is evident.

The volume-dependent terms are not determined absolutely beyond the
second or third decimal place. However, we will be observing differ-
ences between structures at the same volume that are two or three orders
of magnitude smaller. Therefore, we will calculate the values to the
accuracy of Table V and recognize their validity when we have been
treating the volume-dependent terms the same for each of the structures
but not necessarily in an absolute sense.

We now have all the information necessary to calculate the total

system energy. We will perform a molecular dynamics calculation at a

l indicated. The values of this table are plotted in Fig. 35, where the

—
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TABLE IV

CALCULATED VALUES OF THE VOLUME-DEPENDENT TERMS OF EQ. (214)
EVALUATED AT AN ATOMIC VOLUME OF 256 a3, r_ = 3.9390

Term
1
N Z MeEx

ZE
X

=z

z F(q)
q

Expression

z(Z.ZlO)
2
r

s

0.916
-z
r
8

-2(0.115 - 0.031 in rs)

_2(1.22772>
2
r

S

z (0.407258
£ r,

+

e}

0 ® *

A q°F(q) dq

Total

integral.

Value

(Ry)

0.14244

-0.23255

-0.07250

-0.07913

0.05703

-0.27828

-0.46299
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*

After the original publication of this dissertation, a program-
ming error was found in the subroutine which calculates this
Correction of this error results in a difference

in the calculated volume-dependent terms, Ey, of about ~0.02 Ry,

causing the reported values to agree better with experiment.

The new values have been included here, where necessary, or
errata notes specified.
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TABLE V

AT THE VOLUME INDICATED, COLUMN 2 IS THE SUM OF THE VOLUME-DEPENDENT
TERMS OF EQ. (204), COLUMN 3 IS THE STATIC (T = 0) POTENTIAL PER ION
FOR bcc SODIUM, AND COLUMN 4 IS THE TOTAL STATIC SYSTEM ENERGY

Q E, E E, +E
Lad) (Ry) (Ry) (Ry)
232 -0.466836 -0.0070983 -0.473934
240 -0.465522 -0.0087709 -0.474293
250 -0.463924 -0.0105869 -0.474511
256 -0.462989 -0.0115468 -0.474536
260 -0.462374 -0.0121400 -0.474514
270 ~0.460868 -0.0134687 ~-0.474337
280 -0.459405 -0.0146061 -0.474011

given volume, QO’ and input temperature. Once the system has equili-
brated, as discussed in Sec. IV.D, we will calculate the average tem-
perature, T, potential energy per particle, and kinetic energy per par-
ticle. To the potential and kinetic energies, we will add the volume-
dependent energy to obtain the total system enerty, ETOT(QO,T), as an

equation-of-state point in volume and temperature space.
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Fig. 35.
The structure, Eg, and volume, Ey, terms and the total system energy,
ETOT, for bcc sodium at a temperature of zero Kelvin. The values
for Eq have been shifted and can be read from the scale on the right.
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VI. RESULTS

A. Equation-of-State Points for Solid Sodium

In this section we present the results of calculations of the total

system energy, E for solid sodium in the hcp and becc phases.

TOT®
1. Static Crystal Potential. We determined the static (zero tem-

perature) system energy for sodium by calculating the crystal potential
due to the ion-ion interaction potential, ¢(r), using Eq. (106) and add-
ing to it the volume-dependent terms as discussed in Sec. V. The results
of this calculation for bcc sodium were presented in Table V and are
plotted as the lower curve in Fig. 35. The results for both the bcc and
hcp structures are plotted in Fig. 36 as a function of volume. We will
call this energy the static crystal potential (bo.

We performed a least-squares fit to the calculated points in Fig. 36

to a cubic polynomial,
& () = py + PO + DR + p, R (217)
00 1 2°0 370 40

The coefficients of this polynomial are given in Table VI.

TABLE VI

COEFFICIENTS OF THE CUBIC FIT OF THE CALCULATED STATIC CRYSTAL
POTENTIAL AS A FUNCTION OF ATOMIC VOLUME

Term bece hcp
p; (RY) -0.310428 + 0.011 ~0.297263 + 0.035
p, (Ry/a))  (-1.676211 + 0.13) x 107> (-1.8283% + 0.42) x 107
p, (Ry/ag) (5.575895 + 0.51) x 107° (6.161591 + 1.6) x 107°
p, (Ry/aj)  (-5.985510 + 0.66) x 107°  (-6.744432 + 2.1) x 107°
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For this classical system, at zero temperature, the Helmholtz

free energy, F, is equal to the static crystal potential and we calcu-

late the zero temperature pressure from
ad
= fSE. = -0
P, = (asz ) 2 (218)

and the zero-temperature bulk modulus from

2, 32"’0
B, = QO(—Z) =0, . (219)

3%
T:O 0

\

We calculated the zero-temperature pressure and bulk modulus using the
fits to Eq. (217). The results are plotted in Figs. 37a and b.

The measured zero-temperature and pressure static crystal bulk modu-

lus for bcc sodium are reported by Wallace21 as

¢, = -0.46 Ry ,

0
Q. = 255.5 a3 (220)
0 ‘ o’
and B, = 5.05 x 10_4 Ry/a3
0 : 0

These are the values he used to fit the parameters aB, B, and p in the
pseudopotential, as discussed in Sec. III.A.2.

For bce sodium our calculated ¢0 is -0.475 Ry (see Fig. 36). We
calculate the zero-pressure volume to be 255.1 ag, which f-~ 0.2% different
from the observed value, and the bulk modulus to be 5.08 x 10—& Ry/ag,
which is 0.5% different from the observed value.

As 1s apparent from Fig. 36, we calculate that the hcp structure is

the stable phase for sodium at zero temperature. We calculate an energy

b R85 M bt 46 i

e e




124
l.nA . .
] L N
=] N
— N .
® R
~ a N
- S
\ .
s
° N
~ S
>
3
m"\
< g X
[ -] N
& O
~ A3
o Y 4
(-3 : N
s X0
\\
-~ -
-y -
°. -y
b g
-
L 4
230.0 25.0 200.0 265.0 50.0 5.0 &80.0 2%5.0 0.0 5.0 0.0
Q. (ad)
- 0“0
\'? -
(=}
e
X o
~ ow
= -
-
-
\ - -
™ l\“ ~
-
\ S o
X
—~
"o ﬁtNi‘N
8 e
>, -
© I
0 e S
L 4 -
K
-
-
~ \
h
[ 4 ~ (-
™ <4
-
-~
2300 5.0 2.0 5.0 a80.0 335.0 0.0 65.0 0.0 5.0 .0
Q
0(‘0)
Fig. 37.
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fits to Eq. (217).
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3 Ry at an atomic volume of 256 ag.

mental value reported by Straub and Wallace24 is 3.15 x 10-S Ry, and

difference of 14 x 10 The experi-
their calculated value is 6 x 10—5 where they have included the quantum
mechanical zero-point energy of the sodium crystal structures.

Wich ¢0 established, we proceed in the next section to calculate
equation-of-state points at temperatures greater than zero.

2. Total System Energy. In this section we present the results of

calculations of the total system energy, E for bcc and hcp sodium at

TOT’
finite temperatures. The calculations proceed as discussed in Seecs. IV
and V. For each calculation the volume is predetermined as an input
parameter, the temperature is calculated from the time average of the
system kinetic energy, and the structure-dependent energy ES is the time-
averaged sum of the potential and kinetic energies. We add Es to the

volume-dependent term Ev to arrive at the total system energy E E=

TOT
Es + Ev'
We know from harmonic theory that the system energy per particle

must vary as

E = @0 + 3kT , (221)

as T approaches zero. k is Boltzman's constant. We, therefore, write

the energy as

E(QO,T) = ¢0(QO) + 3kT + f(QO,T) ’ (222)

go that the function f(QO,T) contains all contributions that are not
harmonic. Our calculations thus become a direct measure of this function.
The results of the calculations of the total system energy at an

atomic volume of 256 ag are shown in Fig. 38. The solid straight lines
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Fig. 38.
Total system energy vs temperature for hcp and bcc sodium
at an atomic volume of 256 ag.
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are drawn from @0 for each structure at a slope of 3k. The error bars
on the calculations are less than the size of the circles and squares.
The deviation from harmonic behavior as temperature increases is obvious
from the figure.

We calculated the system energy E(QO,T) for bec and hep sodium at
four different volumes--232, 250, 256, and 270 aJ

between 0 and 400 K. The results of these calculations are tabulated in

--and at temperatures

Appendix C.
From the calculated values of E(QO,T), Qo(v), and T, we calculate

the function

£(QyeT) = E(@y,T) - 8,(2y) - 3kT (223)

directly. The results of this calculation are plotted in Fig. 39. The
error bars assigned to the values are the calculated standard deviations
of the means of the statistical time averages. The major portion of the
error in the calculated point is due to the statistical fluctuations of
the temperature.

We fit the data at each atomic volume with a Tz form, which 1is all

the accuracy of the calculation justifies. The function f(Qo,T) then

takes the form

2
f(QO,T) = C(QO)T . (224)

The values of C(Qo) determined by a least-squares fitting procedure are

given in Table VII. These values may be compared with the value of the

2

T® coefficient to the free energy of sodium estimated from heat capacity

measurements and reported by Wallace2 as 8 x 10_10.
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Fig. 39.

The function £(Qy,T) defined by Eq. (223) plotted vs temperat.re
for (a) bec and (b) hep sodium.
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TABLE VII
VALUES OF THE COEFFICIENT C(QO)
Q0 bec hep
(ag) (x 10-9 Ry/kz) (x 10.'9 Ry/kz)
232 0.908 + 0.64 1.301 +# 0.23
250 1.012 + 0.52 1.475 + 0.50
256 1.250 + 0.10 1.563 + 0.25
270 1.350 + 0.51 2.057 + 0.33
These values are plotted in Fig. 40 along with a linear least-
squares fit to the data. The values for the fit
C(Qy) = Cy + ngo (225)

are given in Table VIII.

The calculated values of f(QO,T) for the bcc structure above 350 K
in Fig. 39a were not used for the fits described above. The significant
deviation of the 270 ag point indicates that something other than anhar-
monic effects are taking place. We checked this point and found that
gome particles were diffusing from their lattice sites so that partial
melting had taken place. We will discuss melting in the following sec-

tions.

TABLE VIII

VALUES FOR THE COEFFICIENTS C1 (Ry/kz) AND C, (Ry/kzag) OF EQ. (225)

bee hep
c -9 -9
1 (-1.958 + 3.4) x 10 (-3.247 + 5.7) x 10
c, (1.225 + 1.3) x 1071 (1.923 + 2.2) x 10712
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Values of C(Qo) va atomic volume for (a) becec and
The straight lines are linear least-squares fits
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In this section we have reported the results of the calculation of
the total system energy of solid sodium in the becc and hcp structures.
It is given by
E(R,D) = 05(2,) + KT + C@YT (226)

which is valid within the errors of our calculations for atomic volumes

from 230 to 279 ag and temperatures from 0 to 300 K.

B. The Liquid Phase

We can cause the molecular dynamic system to melt by beginning a
calculation at a temperature high enough that the particles have enough
velocity to move from their crystal lattice positions and diffuse through
the system. We did this for becc sodium at an atomic volume 256 ag by
cho?sing an input temperature of 700 K. The temperature history of\this
calculation is shown in Fig. 4la. If the system were harmonic the tem-
perature would begin to oscillate about 700 K because the initial energy
would be partitioned equally between the potential and kinetic energies
(see discussion in Sec. IV.B.l). Due to the anharmonicity of the system,
the initial temperature is about 620 K (see Fig. 4la). As diffusion
occurs, the potential energy of the system is increased by particles mov-
ing out of their low-potential energy lattice positions. This occurs afr
the expense of the kinetic energy because the total energy in a molecular
dynamics calculation is conserved. The potential, kinetic, and total
energies are shown versus time in Fig. 41b. Thus the temperature of the
system is lowered and the equation-of-state point moves horizontally to
the left in an E,T plot, as indicated by the arrow at point 1 in Fig. 42.

We then use this calculation as a starting point to calculate equa-

tion-of-state points at other temperatures. We do this by artificially
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Time history of the (a) temperature and (b) potential, kinetic, and
total energies for a calculation of bec sodium at an atomic volume of
256 ag with input temperatures of 700 K.
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(ERRATA: Add -0.016089 Ry to values)
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Fig. 42.

Equation-of-state points for solid and liquid socium
at an atomic volume of 256 a3. The numbers irdicate
the order of the calculation as the liquid state formed
by calculation number 1 was cooled and reheated to pro-
duce the hysteresis shown.
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multiplying the velocity of each particle by a factor close to 1.0 to
slowly decrease or increase the temperature of the system. Then when
the system has reached the temperature at which we want the equation-
of-state point, we set this factor equal to 1.0 and allow the system to
equilibrate and take time averages just as we did for the equation-of-
state points arrived at in Sec. VI.A.

In this manner we investigated the equation of state for liquid
sodium at an atomic volume of 256 ag. The results are the square points
shown in Fig. 42. The circles are the calculated bcc solid points which
are plotted here for comparison. The calculations were performed in the
order indicated by the numbers on the points. The system came down the
solid curve, up the lower dashed curve, down the upper dashed curve, and
back up the lower dashed curve. The hysteresis that is evident in this
figure 1Is due to the system "freezing out' available lower-energy con-
figurations as the temperature is lowered.

The interesting point here is that the liquid phase defines its
equation-of-state curve back to low temperatures where it has formed a
metastable, glassy system. Within the confines of the periodic system
and for the short times (in a physical sense) of a molecular dynamics
calculation, this glassy state is stable enough to calculate equation-of-
state points as we did for solid bcc and hep sodium. We recognize, of
course, that at low temperatures the bcc phase of sodium is also a metast-
able state with respect to the hep phase.

This glassy state is most unstable at low temperatures. We allowed

the system initially at 5 K to equilibrate for 1200 cycles. During this

time it increased its temperature to 9 K by adjusting to a lower
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potential energy configuration and moved along the line marked '"DRIFT"
in Fig. 42. Twelve hundred cycles 1s a rather long molecular dynamics

2 s). We

calculation, but represents a very short real time (4 x 10_1
will calculate the equation of state of liquid sodium by starting at a
low-temperature, glassy state as the initial configuration, raising the
temperature, and allowing the system to equilibrate, just as we did for
the solid systems.

Because the glassy system drifts noticeably at low temperatures, we
must estimate the static potential of this state. We do this by calcu-
lating the metastable equilibrium at a low, but finite, temperature (ap-
proximately 30 K). At this temperature we expect that the system is es-
sentially harmonic in that the system energy will be equally partitioned

between kinetic and potential (so that APE = KE in Fig. 43). We then

estimate the static potential for the glassy state as

@O = PE - KE . (227)

We changed the volume of the glassy state by changing the periodic
box dimensions and scaling the particle positions in the same ratio so
that each particle retained the same relative position within the box.
We then estimated the static potential using Eq. (227). The results are
plotted in Fig. 44.

We fit the calculated points with a cubic polymomial,
0 (Q) = p. + pae + p% + p, 00 (228)
ol T P 20 T P3¥o T Py

where the coefficients have the following values.
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Fig. 43.

Time histories of the kinetic, potential, and total
energies of a molecular dynamics calculation. If the
system is harmonic, APE = KE.
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p, = -0.304076 + 0.0056
p, = (-1.712226 + 0.065) x 107
Py = (5.660021 + 0.26) x 1078 *
p, = (-6.067466 + 0.33) x 1077 F

We calculated the finite temperature equation-of-state points for
the liquid state of sodium at atomic volumes 232, 256, and 270 ag. The
results of these calculations are tabulated in Appendix C and plotted in
Figs. 45a, b, and c, respectively. The equation-of-state points for bcc
sodium at these volumes are included in these figures. The circles denote
points that were calculated starting with the bcc configuration and the
squares denote points that were calculated starting at the glassy state.
The circled points on the liquid curve have melted from the bcc config-
uration.

We analyzed the equation-of--state points for the glassy state in
much the same way we analyzed the solid equation-of~state points in

Sec. VI.A. As before, we expect the temperature dependence of the energy

to be of the form T

SEY

E(QO,T) = ¢O(Qo) + 3kT + f(QO,T) . (229)
However, ¢0 is not well determined so we calculate
¢0(Qo) + f(QO,T) = E(QO,T) - 3kT . . (230)

The resulting points are plotted versus temperature in Figs. 46 a, b,

and ¢c. We fit these points with a function of the form

2
¢0(QO) + f(no,r) = ¢O(QO) + C(QO)T . (231)

with results shown in Table IX.
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TABLE IX

COEFFICIENTS IN THE FIT TO ¢0(Qo) + f(QO,T)

S 30(2) c(@y)
0*%0 (Ry) (Ry/k?)
232 ~0.472520 + 1.3 x 10™%  (3.915 + 1.4) x 10™°
256 -0.47309 + 1.2 x 10™%  (2.598 + 0.75) x 107>
270 -0.473215 + 0.9 x 10°*  (3.630 + 0.72) x 107>

The values of C(Qo) in Table IX are plotted versus volume in Fig.

47, We fit these points with a straight line and arrived at

8 9

Q. (232)

+ (-0.126 # 4.3) x 10~ 9

C(Qy) = (0.657 + 11) x 10~

so that, in the same manner as for the solid bcc and hep phases, we have
specified the equation of state, E(QO,T), for the glassy and liquid
states of sodium over the volume and temperature ranges of our calcula-
tions.

C. Melting

We here discuss in more detail the dynamics of melting of our
molecular dynamics system. We concentrate on the calculations performed
at an atomic volume of 256 ag shown in Fig. 45b.

We may investigate whether or not a particular calculation has
melted in four different ways.

First, as we have already mentioned, we notice which curve in E,T
space it lies--the solid or the liquid curve. The point labeled 1 in
Fig. 45b appears to be on the solid curve, 3 is on the liquid curve, and
2 is somewhere in between.

Second, we may evaluate the atomic distribution of particles as dis-

cussed in Sec. IV.D. The atomic distributions for points 1, 2, and 3 at
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one ctime are plotted as the solid lines in Figs. 48a, b, and ¢, respec-
tively. From these plots no definitive statement may be made about the
state of the system. However, if the particle positions are averaged
over time for point 1, as shown by the dashed curve in Fig. 48a, the
crystal shell peaks are seen to appear, indicating that the particles are
still oscillating about their lattice positions. When the same averaging
is performed for point 3, the character of the distribution does not
change. The same averaging for point 2 shows less peaking than 1 but more
than 3. Therefore, we have another definitive difference between the
liquid and sclid equation-of-state points.

Thirdly, we may investigate the average distance that a particle is
from its starting lattice position. We do this by calculating the mean-

square displacement, Arz, defined as

Ar? = <(r - %, (233)

where o is the initial position of the particle and r is the current
position. We then plot Z;E versus time. This was done for calculations
of points 1, 2, and 3 in Fig. 45b, with the results shown in Fig. 49.
The mean-square displacement for point 1 has settled down to a constant
value so that the average displacement of a particle from its original
position remains constant. The calculated value for point 3, however,
shows a reasonably constant slope, indicating that atomic diffusion is
indeed occurring with particles moving away from their original lattice
sites. The mean-square displacement for point 2 shows behavior in be-
tween these two extremes, indicating that partial melting 1is occurring.
Finally, we may look at plots of the positions of the particles

in space. To help keep track of particles, we have chosen to connect

nearest neighbor particles within each close-packed plane by lines.
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Fig. 48.
The solid lines are the atomic distributions at one instant and the

48b

dashed lines are the distributions of the particle positions aver-
aged over 200 cycles for points (a) 1, (b) 2, and (c) 3 of Fig. 45b.
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The initial configurations with these lines drawn have already been
shown in Figs. 27 and 28. When a particle gets more than 8.0 a, from its
near neighbor, the lines are no longer drawn. Figures 50a, b, and c

show these plots for points 1, 2, and 3 of Fig. 45b. 1t is obvious that,
for the most part, the particles of the calculation of point 1 maintain
their positions within the crystal structure, while point 3 particles

are diffusing through the system. For point 2 there seem to be regions
where diffusion is occurring and regions where it is not.

From the four techniques mentioned above, we can state that point 3
has melted and point 1 has not. Point 2 is in some intermediate state.
As the error bars on this point in Fig. 45b indicate, it did not reach a
definite equilibrium state after a rather long molecular dynamics calcu-
lation. The time history of the temperature of this calculation is
shown in Fig. 51. We notice here a long wavelength oscillation of the
average temperature is present, as indicated by the dashed line. This
calculation has not reached equilibrium. Point 3, however, has reached
equilibrium on the liquid curve at about 400 K and we should be able to
identify this as an upper limit to the melting temperature of sodium.

We may make no such statement about a lower limit because point 1 may be
metastable in the solid phase.

We investigated the melting of sodium at atomic volumes of 232 ag
and 270 ag in the same manner as was done for the 256 ag calculations
described above. The calculated points marked with arrows in Figs. 45a
and ¢ indicate calculations for which the diffusion and thus the decrease

in temperature was proceeding too slowly to warrant allowing the calcula-

tions to proceed to equilibrium. From the calculated points we may,

——

..J
%

R Lt

Lo




{

-

- ™.

< T

|

z(ao)

! ’ T\\LAW“A\" o
5] ) avaNp, i NS
- \‘\"‘Wﬁ "/A“
; N NN
R —— e .
3| I S — 21
e — o
] e gt X

50a

(

149

50b

wu”vqpi

z(ao)

"’0,4:‘:"‘»

8.9

A\ "lk :‘\

e "

nbz;:.,,g

‘;’A

L\
AV

Q.‘ L.
N

Fig. S0O.

Pogitions of the particles in the molecular dynamics system viewed
looking down the x-axis. Lines have been drawn between near
neighbors within a close~packed plane at the initial configura-
tion. a, b, and ¢ show the positions for the calculations which
produced points 1, 2, and 3 of Fig. 45b, respectively.
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however, place upper limits on the melting temperatures as 430 K for the
232 ag case and 370 K for the 270 ag case,

We compare our results with experimental data on sodium to indicate
how realistic our molecular dynamics system is. The estimated upper
limit to the melting temperatures of 400 K is consistent with the ob-
served melting temperature of 370 K.

Gingrich and Heaton25 reported the experimental atomic distribution
for sodium at 373 K. It is shown as the dashed curve of Fig. 52, where
it is compared with our calculated curve for liquid sodium at 400 K.

rom the upper curve of Fig. 49 we calculate the self-diffusion co-

efficient for liquid sodium, which is defined as

2

ar?
D bt R (234)

so that D is one-sixth the slope of the curve. We calculate this slope

to be 0.056 ag/Tﬁ, which yields a self-diffusion coefficient of D =

3.7 x 10-5 cmz/s. The experimental value reported by Faber26 is 4.2 x

10—5 cmZ/s.

We also compare the difference between the solid and liquid curves
at constant temperature with the latent heat of fusion for sodium which
is 31.7 cal/g = 2.32 x 10-3 Ry/ion. The difference between the solid and
3

liquid curves at 400 K for the 256 ag atomic volume case is 1.7 x 10

Ry/ion.
The above results indicate that the molecular dynamics system is

reproducing the essential characteristics of solid and liquid sodium.

D. Dynamic Phase Change

In this section we investigate the bcc-to-hcp phase change. We

have already mentioned that the constraint of the fixed boundary
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at 373 K.

Fig. 52.
The solid line is the calculated atomic distribution of sodium at
400 K. The dashed line is the experimental curve from Ref. 25
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conditions may cause a system to be metastable. This is why we may per-
form calculations on bcc sodium at low temperatures even though the hep
system is the preferred phase. Both the becc and hep 672-particle systems
occupy the same volume but the shape of the system boxes is different, as
described in Sec. IV.B. At the end of Sec. IV.B we mentioned that a com-
pression in the y-direction of the bcc close-packed plane, to form a
hexagonal structure and a corresponding increase in the x- and z-direc-
tions of appropriate magnitude to maintain constant volume, may allow the
hep form to "fit" in the correctly shaped box.

We made this change of shape on a bcc system at a temperature of
50 K. The calculation was allowed to equilibrate for 150 time units, as
shown in the time history plots of the potential, kinetic, and total
energies of Fig. 53. The atomic distribution of the system at this time
was that shown in Fig. 54a, and the arrangement of particles is shown in
Fig. 55a. For this figure we have connected the nearest neighbors with
lines for clarity. (For a perfect bcc structure without thermal motion,
all the lines would be either horizontal or vertical in Fig. 55a).

By changing the shape of the box, we created a body-centered tetrag-
onal system, thus increasing the potential energy discontinuously and
doing work on the system. The jump in potential and total energiles is
evident in Fig. 53 and the body-centered tetragonal atomic distribution
and particle positions are shown in Figs. 54b and 55b.

The system was allowed to equilibrate on its own. The change of
shape had the effect of pushing the system over a potential energy bar-
rier and allowing the particles to find their hcp configuration. This
is attained by the close-packed planes shifting relative to one another,

which is characteristic of martensitic phase transitions. This shifting
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is indicated by the arrows in Fig. 55b. As the planes shift, the poten-
tial energy 1s lowered and this is accompanied by a corresponding increase
in the kinetic energy, thus raising the system temperature. The system
reaches equilibrium as shown in Fig. 53. The atomic distribution for

this elevated temperature system is shown in Fig. S54c. We then cooled
the system back to about 50 K. The atomic distribution of Fig. 54d shows
the peaks characteristic of the hcp structure. The particle positions

are shown in Fig. 55c¢, where the hexagonal structure is apparent. An in-
vestigation of the stacking of the planes showed that the system did not
equilibraﬁe to a perfect hcp structure, which is an ABABAB::- arrangement
of close-packed planes (as discussed in Sec. IV.B), but there are sta;king
faults as indicated by the ABC labeling of the planes of Fig. 55¢. Such
stacking faults are prevalent in nature.

We performed a computer experiment on a similar system where we
heated the system close to melting and cooled it down. We found that the
system would return to the hcp structure, but with stacking faults in dif-
ferent places.

It is difficult to make any quantitative statements about this demon-
stration. However, it does indicate that a change of shape of the peri-
odic box is necessary to observe a phase change of the type demonstrated
here. A shape change is one of the properties that characterizes a mar-
tensitic phase change in nature. A change of shape might not be necessary
if the system size were very large or 1f free volume existed which would

ease the constraining effects of the periodic boundaries.
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VII. DISCUSSION AND CONCLUSIONS

In this paper we have demonstrated that the molecular dynamics }
technique, coupled with an interaction potential that adequately
describes the ion-ion interaction, can be used to study the macroscopic
properties of a simple metal. This technique is unique in that it
provides a direct calculation of the anharmonic terms in the total system
energy. We calculated and presented these terms as a function of volume
and temperature for the solid hcp and becc phases and the glassy solid
and liquid state of sodium.

We also calculated and discussed the melting of sodium and were
able to reproduce the experimental heat of fusion and put an upper limit
on the melt temperature. We showed, by comparison with the experimental
atomic distribution and diffusion coefficients, that our calculations
adequately represent the dynamic properties of sodium.

As a final demonstration of the capabilities of this technique, .
we presented the results of a calculation that reproduces the bce-hecp
martensitic phase transition in sodium as a dynamic process. Although
this transition was artificially induced by a change of shape of the
calculational volume, it demonstrates that such studies are feasible
and indicates that such shape changes, which occur in nature, will be
a necessary part of future studies.

The possibilities of future work using this technique are many.

Although we have the ability to determine the system energy using molec-

ular dynamics, we must look elsewhere to determine the system entropy.

This may be done by performing calculations in regions where the theories

are known to work. For example, a quasi-harmonic theory may be used to
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determine the entropies at low temperatures for the solid. Ideal

gas or hard-sphere theories may be used at high temperatures for the
liquid. Once the entropy is known, the molecular dynamics results may
be used to integrate for the free energies and thus the thermodynamic
properties will be completely specified. With this done, the phase
change and melt regions may be determined from a comparison of free
energies.

The technique sltould also prove valuable because it may be
extended to higher density and temperature regions. Such theoretical
determination of the equation-of-state and dynamic properties is applic-
able to many areas of current interest such as the study of shock-induced
conditions. The fact that the interaction potential is volume dependent
means that regions of varying densities, which exist (for example) during
the shocking of a material, may be realistically treated.

However, this pseudopotential theory as presented here is limited to
simple metals and compressions of about 507 by the nearly-free-electron
behavior and the theoretical constraint that the ion cores do not overlap.
The extension of the theory to handle systems with more complicated
electronic structures is being done (see, for example, Refs. 1, 2, 6,
and 7) and there is no compelling reason why the theory could not be
developed and this technique applied even after the ion cores overlap
and {onization occurs. We would then be able to calculate the properties
of materials at very high temperatures and pressures that are not easily

accessible to experiment.

i

A

e Y

bé‘:' teas A T




3‘¥7ﬁ

APPENDIX A

161

CALCULATED VALUES OF THE EFFECTIVE ION-ION INTERACTION PQTENTIAL AND
FORCE FOR SODIUM AT AN ATOMIC VOLUME OF 256 ag

(The potential and force are given by Eqs. (140) and (14l) and are
plotted in Figs. 9 and 10.)
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APPENDIX B
CALCULATION OF THE KURTOSIS, C, FOR A MICROCANONICAL ENSEMBLE
OF A ONE-DIMENSIONAL CHAIN OF HARD RODS*
A "' g l“ 4
I ] — I 1 — f
— S I 1 1 |
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/ /
0 L x

For a microcanonical ensemble the energy, number of rods, and volume

are constant.

E =

P =

L =
N =

by
VN(p) =

For this system we have

energy
radius of the constant energy hypersphere in momentum
space = (2mEZ)!5

system length

number of rods

momentum of ith particle

volume of an N~dimensional hypersphere of radius p

]
42

s g
H

2

1 p
E =3 Nkt =o0

N
'E Py »

i=1

~
-E Py = 0 (center of mass fixed)

i=1
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Based on a calculation by Brad Lee '»wlian, Los Alamos National Laboratory.
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.

and

3 (2mE)® <P < [2m(E + AE)1}/2 }

in the limit as

o
P

N~

E
g 0
The partition function for the microcanonical ensemble 1529

*
1
- f‘“’l fdpz'"/de[dqlquz"'quN '
N'h

where * implies that the momentum is constrained to be on the N-dimen-

sional hypersphere of radius P = (ZmE)%, a constant energy surface.

L - No is the length available to each particle, so that

= L=89)_  1in [(v.(P + AP) - V.(P)] .;,
vnY  ap N N <
0

The average of the quantity P" is given by

— , N p,x N
pn.(i)&_ﬁgz_fdp.../dp N
2 N 1 N i
N N'h i=]
We now define

* N
n
L(P) -fdpl---fdPN Z Py
L BB

i=1

so that
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In(P + AP) - In(P)
IAGEN IR

P = lim
30

In(P) is an N-dimensional hypersphere integral.

The volume, VN(P) is given by3°

N/2

_m’s N, N
W) D 1 T vy

For n odd

I(® =0,

and for n even

i F/2) + LTI + 1)/2] o
(P = W) rpy 2 my72 # 1IT(1/2)  ©

We now expand
N4n
(@ + ap)¥® - pN pN'“’[(l +22) - ]

.p“*“[l+(N+n)AT}’+--- -1]

= PN+“(N+n) QP—P+

so that

- FIN/2) + DJCIN +1)/2] N4+n AP ...
In(P + AP) - In(P) NVN(l) TN + )72 + 11T (172) (N + n)P 5 +

and similarly

N N NAP ..
V(P +4P) - vN(p) - VN(l)((P +AP)Y - P] = NVN(l)P o+

so that

’

<
1,

k "):‘h}‘

3,05 3.5.8° 5 J5p e

3
(3

. =



S e ouEL GEE SN SN NN AN AN S GEh ISR IS NI SR MEE ewe e

167

In(P + AP) - IN(P)

n
P" = 1lim
AP__,O VN(P + AP) - VN(P)
P
. pn (N + WT[(W2) + LIT[(N +1)/2]
TL(N + n)/2 + 1]T(1/2) ’
and we see that
n=20 P0 = N ,
n=2 P2 = P2 , and
& _ 3P
D=4 P =5+2
So, on using
— n
n 1P
V' *Ya
m
and
-l ) (2mE)n/2 . l(_2_::._:)n/2 i l.(EEI)n/Z
N o N\m N\'m i

we may calculate the kurtosis, C, in terms of the velocity moments.

so that
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or for large N

which is the result used in the text in Sec.

2
c=2(2)
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CALCULATED EQUATION~-OF-STATE POINTS FOR hep, bcc, AND LIQUID SODIUM

The equation-of-state points are tabulated according to the ini-

tial configuration of the system.

For example, the high temperature

bce calculations are reported with the bcc results even though the sys-

tem may have melted. All calculations for which the initial condition

was the glassy state are reported as equation-of-state points for liquid

sodium. The reported errors are the standard deviations of the means

and represent the fluctuations of the system temperature and total en-

ergy at equilibrium.

hep Structure

QO = 232, ¢0 = -0.458465

(ERRATA: Add -0.015559 Ry
to energy values)

hep Structure

QO = 250, ¢0 = -0.458682

(ERRATA: Add -0.015960 Ry
to energy values)

hep Structure
Qo = 256, ¢0 = -0.458585

(ERRATA: Add -0.016089 Ry
to energy values)

T Error Energy Erfgr
(X) (X) (Ry) (x 10 " Ry)
98.83 0.4 .-0.456570 0.4
198.01 0.7 -0.454657 0.4
294.48 0.5 -0.452755 0.6
99.63 0.3 -0.456778 0.2
198.60 0.5 ~0.454864 0.3
293.98 0.4 -0.452962 0.6
10.03 0.04 -0.458394 0.06
49.68 0.3 -0.457634 0.2
99.19 0.3 -0.456685 0.2
198.11 0.5 -0.454771 0.2
293.27 0.4 -0.452873 0.5




hcp Structure
Qo = 270, ¢, = 0.458131

(ERRATA: Add -0.016374 Ry
to energy values)

bee Structure
Qo = 232, <I>0

(ERRATA: Add -0.155859 Ry
to energy values)

= ~0.458447

bce Structure
QO = 250, ¢0 = -0.458551

(ERRATA: Add -0.015960 Ry
to energy values)
bce Structure

QO = 256, ¢0 = -0.458447

(ERRATA: Add -0.016089 Ry
to energy values)
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T Error Energy Erfzr
(K) (K) (Ry) (x 10 " Ry)
20.01 0.08 ~-0.457743 0.1
49.31 0.3 -0.457176 0.2
98.73 0.3 -0.456227 0.2
196.09 0.4 -0.454313 0.3
291.93 0.4 -0.452416 0.5
100.43 0.5 -0.456472 0.4
199.62 0.8 -0.454558 0.6
296.41 0.8 -0.452656 0.6
390.78 0.6 -0.450747 1.0
432.10 0.5 -0.447884 0.6
463.88 -0.448818 (not
equilibrated)
476.88 -0.446919 (not
equilibrated)
100.36 0.6 ~0.456650 0.4
198.76 0.8 -0.454737 0.5
296.26 0.4 70.452830 0.6
10.04 0.05 -0.458256 0.07
50.37 0.2 -0.457495 0.1
100.15 0.6 -0.456546 0.4
198.33 0.8 -0.454635 0.5
294.28 0.3 -0.452744 0.3
294.86 0.3 -0.452729 0.4
343.94 0.4 -0.451768 0.4
387.94 0.6 -0.450851 0.5
399.13 0.5 -0.448906 0.5

s daed

2.4 % R Y
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becc Structure

Q, = 256, ¢

(cont)

= -0.458447

bec Structure
Q. = 270, ¢o

0
(ERRATA: Add -0.16374 Ry

to energy values)

= ~0.457963

Liquid, 9, = 232

(ERRATA: Add -0.015559 Ry
to energy values)

T
(K)
408,32

488.28

587.46

99.11
199.23
246.98
295.08
340.82
374.16
404.68
411.31

498.54

10.01
12.78
19.24
31.79
82.54
125.17
183.37
248.42
329.61

403.75
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Error Energy Erfzr
(K) (Ry) (x 10 ~ Ry)
-0.449869 ézzzlibrated)
0.6 -0.447009 0.7
1.0 -0.445122 1.0
0.5 -0.456066 0.6
0.4 -0.454153 0.4
0.4 -0.453214 0.5
0.3 -0.452261 0.5
0.5 -0.451290 0.6
~0.450357 é:ﬁilibrated)
-0.449395 ézzilibrated)
0.7 -0.448432 1.0
0.6 -0.446535 0.7
-0.456692
-0.456693 ). (not st. le)
-0.456538
0.02 -0.456269 0.01
0.2 -0.455298 0.07
0.2 -0.454516 0.1
0.3 -0.453373 0.2
0.5 -0.452092 0.3
0.6 -0.450440 0.4
0.5 -0.448639 0.4
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Liquid, §

(ERRATA:
to energy

Liquid, §

(ERRATA:
to energy

0 = 256

Add -0.016089 Ry
values)

0 = 270

Add -0.016374 Ry
values)
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T Error Energy Erfgr
¢9) (X) (Ry) (x 10 " Ry)
17.83 -0.456862 (not stable)
30.70 0.03 -0.456593 0.03
70.47 0.2 -0.455727 0.1
137.61 0.4 -0.454357 0.1
229.80 0.3 -0.452499 0.2
229.96 0.4 -0.452444 0.3
263.39 0.4 -0.451672 0.2
358.78 0.3 -0.449743 0.2
374.80 0.6 ~0.449574 0.4
482.73 0.9 -0.447149 0.7
7.10 -0.456667 (not stable)
30.06 0.04 -0.456244 0.02
62.04 0.1 -0.455619 0.06
142.79 0.4 -0.454108 0.2
194.91 0.4 -0.453033 0.2
262.31 0.6 -0.451668 0.3
307.33 0.6 -0.450628 0.3
396.01 0.4 -0.448595 0.3
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